A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.
0, 2, 12, 72, 480, 4320, 35280, 322560, 3265920, 39916800, 479001600, 6706022400, 93405312000, 1482030950400, 24845812992000, 418455797760000, 7469435990016000, 147254595231744000, 2919482409811968000, 63255452212592640000, 1430546380807864320000
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Math.stackexchange.com, Normalizer of the cyclic group in S_n
Programs
-
GAP
List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
-
GAP
a:=function(n) local total, perm, g, p, k; total:= 0; g:= SymmetricGroup(n); for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1)); total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p)); od; od; return total; end; # Andrew Howroyd, Jul 30 2018
-
PARI
a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ Andrew Howroyd, Jul 30 2018
Formula
a(n) = n! * A013939(n). - Andrew Howroyd, Jul 30 2018
Extensions
Terms a(8) and beyond from Andrew Howroyd, Jul 30 2018