A181969 Prime-generating polynomial: a(n) = 16*n^2 - 292*n + 1373.
1373, 1097, 853, 641, 461, 313, 197, 113, 61, 41, 53, 97, 173, 281, 421, 593, 797, 1033, 1301, 1601, 1933, 2297, 2693, 3121, 3581, 4073, 4597, 5153, 5741, 6361, 7013, 7697, 8413, 9161, 9941, 10753, 11597, 12473, 13381, 14321, 15293, 16297, 17333, 18401, 19501, 20633
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Marius Coman, Ten prime-generating quadratic polynomials, Preprint 2015.
- Factor Database, Factorizations of 16n^2-292n+1373.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n^2-73*n+1373: n in [0..172 by 4]]; // Bruno Berselli, Apr 06 2012
-
Mathematica
Table[16*n^2 - 292*n + 1373, {n, 0, 50}] (* T. D. Noe, Apr 04 2012 *)
-
PARI
a(n)=16*n^2-292*n+1373 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (1373 - 3022*x + 1681*x^2)/(1-x)^3. - Bruno Berselli, Apr 06 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(1373 - 276*x + 16*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
Offset changed from 1 to 0 by Bruno Berselli, Apr 06 2012
Comments