A181973 Prime-generating polynomial: a(n) = 16*n^2 - 300*n + 1447.
1447, 1163, 911, 691, 503, 347, 223, 131, 71, 43, 47, 83, 151, 251, 383, 547, 743, 971, 1231, 1523, 1847, 2203, 2591, 3011, 3463, 3947, 4463, 5011, 5591, 6203, 6847, 7523, 8231, 8971, 9743, 10547, 11383, 12251, 13151, 14083, 15047, 16043, 17071, 18131, 19223, 20347
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Marius Coman, Ten prime-generating quadratic polynomials, Preprint 2015.
- Factor Database, Factorizations of 16n^2-300n+1447. [Broken link?]
- Carlos Rivera, Puzzle 232: Primes and Cubic polynomials, The Prime Puzzles & Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n^2-75*n+1447: n in [0..176 by 4]]; // Bruno Berselli, Apr 06 2012
-
Mathematica
Table[16*n^2 - 300*n + 1447, {n, 0, 50}] (* T. D. Noe, Apr 04 2012 *)
-
PARI
a(n)=16*n^2 - 300*n + 1447 \\ Charles R Greathouse IV, Dec 08 2014
Formula
G.f.: (1447 - 3178*x + 1763*x^2)/(1-x)^3. - Bruno Berselli, Apr 06 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(1447 - 284*x + 16*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
Offset changed from 1 to 0 by Bruno Berselli, Apr 06 2012
Comments