cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181984 INVERT transform of A028310.

Original entry on oeis.org

1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545, 7459895657, 17342153393, 40315615410, 93722435101
Offset: 0

Views

Author

Michael Somos, Apr 04 2012

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 28*x^4 + 65*x^5 + 151*x^6 + 351*x^7 + 816*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2)/(1-3*x+2*x^2-x^3))); // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[(1-x+x^2)/(1-3*x+2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = if( n<0, n = -1-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))}
    
  • PARI
    x='x+O('x^50); Vec((1-x+x^2)/(1-3*x+2*x^2-x^3)) \\ G. C. Greubel, Aug 12 2018
    

Formula

G.f.: (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3).
G.f.: 1 / (1 - 2*x / (1 - x / (2 + x / (1 - 2*x / (1 + x))))).
a(n) = A034943(n + 2) = A185963(-2 - n).
a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3).
a(n) satisfies 1 = f(a(n-2), a(n-1), a(n)) where f(u, v, w) = u^3 - 5*v^3 + w^3 + u*v * (7*v -4*u) + u*w * (3*u + 2*w) + v*w * (11*v - 6*w) - 9*u*v*w.
a(n) = A000931(3*n + 6). - Michael Somos, Sep 18 2012