A181996 Triangle of Ward numbers T(n,k) (n>=0, k=0 if n=0, otherwise 0 <= k <= n-1) read by rows.
1, 1, 3, 1, 15, 10, 1, 105, 105, 25, 1, 945, 1260, 490, 56, 1, 10395, 17325, 9450, 1918, 119, 1, 135135, 270270, 190575, 56980, 6825, 246, 1, 2027025, 4729725, 4099095, 1636635, 302995, 22935, 501, 1, 34459425, 91891800, 94594500, 47507460, 12122110, 1487200, 74316, 1012, 1
Offset: 0
Examples
Triangle begins: 1 1 3 1 15 10 1 105 105 25 1 945 1260 490 56 1 10395 17325 9450 1918 119 1 ...
References
- Charles Jordan, Calculus of Finite Differences, Chelsea 1950, p. 172, Table C_{m, i}.
Links
- L. Carlitz, The coefficients in an asymptotic expansion and certain related numbers, Duke Math. J., vol 35 (1968), p. 83-90. See page 85.
- José L. Cereceda, Figurate numbers and sums of powers of integers, arXiv:2001.03208 [math.NT], 2020. See Table 8 p. 11.
- Lane Clark, Asymptotic normality of the Ward numbers, Discrete Math. 203 (1999), no. 1-3, 41-48. MR1696232 (2000d:11101)
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 1.
Crossrefs
Programs
-
Maple
A181996 := (n,k) -> add((-1)^(n - k + m)*binomial(2*n - k, n + m)*Stirling2(n + m, m), m = 0..n-k): seq(seq(A181996(n, k), k = 0..n-1+0^n), n=0..8); # Peter Luschny, Feb 19 2021
-
PARI
T(n,k) = {if (n == 0, return(1)); if (k == 0, return (prod(x=2,n, 2*x-1))); if (k == n, return (0)); return((2*n-1-k)*T(n-1,k) + (n-k)*T(n-1, k-1));} \\ Michel Marcus, Feb 07 2013
Formula
T(n, k) = Sum_{m = 0..n-k} (-1)^(n - k + m)*C(2*n - k, n + m)*Stirling2(n + m, m). - Peter Luschny, Feb 19 2021
Extensions
More terms from Michel Marcus, Feb 07 2013
Comments