cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181996 Triangle of Ward numbers T(n,k) (n>=0, k=0 if n=0, otherwise 0 <= k <= n-1) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 15, 10, 1, 105, 105, 25, 1, 945, 1260, 490, 56, 1, 10395, 17325, 9450, 1918, 119, 1, 135135, 270270, 190575, 56980, 6825, 246, 1, 2027025, 4729725, 4099095, 1636635, 302995, 22935, 501, 1, 34459425, 91891800, 94594500, 47507460, 12122110, 1487200, 74316, 1012, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2012

Keywords

Comments

It appears that the sum of row(n) is A000311(n+1). - Michel Marcus, Feb 07 2013
Conjecture on row sums was proved in the first paragraph of the formula section of the reverse matrix A134991 in 2008 (e.g.f. evaluated at t=1). - Tom Copeland, Jan 03 2016

Examples

			Triangle begins:
      1
      1
      3     1
     15    10    1
    105   105   25    1
    945  1260  490   56   1
  10395 17325 9450 1918 119 1 ...
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1950, p. 172, Table C_{m, i}.

Crossrefs

See A134991, which is the mirror image and is the main entry for this triangle, for further information.
Cf. A000311.

Programs

  • Maple
    A181996 := (n,k) -> add((-1)^(n - k + m)*binomial(2*n - k, n + m)*Stirling2(n + m, m), m = 0..n-k):
    seq(seq(A181996(n, k), k = 0..n-1+0^n), n=0..8); # Peter Luschny, Feb 19 2021
  • PARI
    T(n,k) = {if (n == 0, return(1)); if (k == 0, return (prod(x=2,n, 2*x-1))); if (k == n, return (0)); return((2*n-1-k)*T(n-1,k) + (n-k)*T(n-1, k-1));} \\ Michel Marcus, Feb 07 2013

Formula

T(n, k) = Sum_{m = 0..n-k} (-1)^(n - k + m)*C(2*n - k, n + m)*Stirling2(n + m, m). - Peter Luschny, Feb 19 2021

Extensions

More terms from Michel Marcus, Feb 07 2013