A182076 Smallest number k such that the difference between the greatest prime divisor of k and the product of the other distinct prime divisors equals n.
2, 3, 10, 5, 14, 7, 78, 33, 22, 11, 26, 13, 114, 51, 34, 17, 38, 19, 290, 69, 46, 23, 174, 145, 186, 87, 58, 29, 62, 31, 222, 185, 430, 111, 74, 37, 258, 123, 82, 41, 86, 43, 530, 141, 94, 47, 318, 265, 590, 159, 106, 53, 354, 295, 366, 177, 118, 59, 122, 61
Offset: 1
Examples
a(7) = 78 because the distinct prime divisors of 78 are {2, 3, 13} and 13 - 2*3 = 7.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 1 to 60 do:ii:=0:for k from 2 to 200000 while(ii=0) do:x:=factorset(k):m:=nops(x): s:=product ('x[i] ', 'i'=1..m-1):if s+n = x[m] then printf(`%d, `,k):ii:=1:else fi:od: od:
-
PARI
a(n)=my(t);for(k=n+1,4<
Charles R Greathouse IV, Apr 11 2012 -
PARI
a(n)=my(p=nextprime(n+1));while(!issquarefree(p-n), p=nextprime(p+1));p*(p-n) \\ Charles R Greathouse IV, Apr 11 2012
Comments