cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182027 a(n) = number of n-lettered words in the alphabet {1, 2} with as many occurrences of the substring (consecutive subword) [1, 1] as of [2, 2].

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780, 2333606220, 4667212440, 9075135300, 18150270600, 35345263800
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2012

Keywords

Crossrefs

Apart from initial terms, same as A063886.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1,2$3][n+1],
          (2*a(n-1)+4*(n-3)*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..39);  # Alois P. Heinz, May 11 2024

Formula

G.f.: 1 + x + x*sqrt((1+2*x)/(1-2*x))= 1 + x + x/G(0), where G(k)= 1 - 2*x/(1 + 2*x/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f.: 1 + x - (x*BesselI(1, 2*x)*(2 + Pi*(1 + 2*x)*StruveL(0, 2*x)) - x*(1 + 2*x)*BesselI(0, 2*x)*(2 + Pi*StruveL(1, 2*x)))/2. - Stefano Spezia, May 11 2024