A182029 Least odd k > a(n-1) such that 3*k*2^n-1 is a prime number.
1, 5, 7, 9, 15, 25, 31, 33, 35, 45, 47, 49, 59, 65, 91, 115, 127, 135, 137, 149, 165, 175, 183, 185, 217, 225, 245, 273, 279, 287, 303, 349, 359, 429, 433, 445, 457, 525, 577, 593, 599, 629, 641, 673, 675, 679, 727, 749, 775, 795, 835, 855, 973, 1049, 1087
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A210651.
Programs
-
Mathematica
lok[{n_,a_}]:=Module[{k=a+2,c=3*2^n},While[!PrimeQ[c*k-1],k+=2];{n+1,k}]; Drop[NestList[ lok,{1,1},60][[;;,2]],{2}] (* Harvey P. Dale, Sep 12 2023 *)
Comments