A182030 Least odd number k such that 3*k*2^n-1 and 3*k*2^n+1 are twin primes.
1, 1, 3, 5, 27, 1, 3, 19, 15, 5, 33, 55, 123, 15, 115, 39, 127, 1, 23, 149, 27, 11, 393, 81, 255, 125, 27, 129, 15, 115, 227, 195, 125, 89, 247, 71, 143, 1031, 55, 89, 85, 365, 3, 49, 283, 135, 497, 59, 647, 309, 375, 399, 667, 111, 173, 355, 195, 219, 43, 49
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..1755
Crossrefs
Cf. A210651.
Programs
-
Mathematica
lon[n_]:=Module[{k=1,n2=3*2^n},While[!PrimeQ[k*n2-1]||!PrimeQ[k*n2+1], k= k+2];k]; Array[lon,60] (* Harvey P. Dale, Nov 27 2015 *)
Comments