cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182031 Expansion of q^(-5/24) * (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2))^4 in powers of q.

Original entry on oeis.org

1, 4, 18, 53, 163, 414, 1059, 2431, 5553, 11844, 25013, 50391, 100362, 193136, 367371, 680705, 1247247, 2238408, 3975218, 6941384, 12003156, 20465599, 34581525, 57737205, 95601892, 156665029, 254777220, 410580026, 657015874
Offset: 0

Views

Author

Michael Somos, Apr 07 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 4*x + 18*x^2 + 53*x^3 + 163*x^4 + 414*x^5 + 1059*x^6 + 2431*x^7 + ...
q^5 + 4*q^13 + 18*q^21 + 53*q^29 + 163*q^37 + 414*q^45 + 1059*q^53 + ...
		

References

  • H.-C. Chan, On the Andrews-Schur proof of the Rogers-Ramanujan identities, Ramanujan J. 23 (2010), no. 1-3, 417-431. see p. 430 Theorem 7.

Crossrefs

Cf. A002513.

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/8)*(eta[q^3]*eta[q^6])^3/(eta[q]*eta[q^2])^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 16 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A))^4, n))}
    
  • PARI
    q='q+O('q^99); Vec((eta(q^3)*eta(q^6))^3/(eta(q)*eta(q^2))^4) \\ Altug Alkan, Apr 16 2018

Formula

Expansion of (psi(x^3) * phi(-x^3))^3 / (psi(x) * phi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
Euler transform of period 6 sequence [ 4, 8, 1, 8, 4, 2, ...].
A002513(3*n + 2) = 3 * a(n).