A182037 Expansion of 1 - (1 - 2*x - x^2)^(1/2).
0, 1, 2, 6, 36, 300, 3240, 42840, 670320, 12111120, 248119200, 5683154400, 143910043200, 3991909521600, 120376874217600, 3920816403504000, 137177166174048000, 5130755025780384000, 204295093225134912000, 8627985710304472512000, 385222786392984059520000
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..394
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 23.
Programs
-
Mathematica
nn = 15; a = (1 - x - (1 - 2 x - x^2)^(1/2))/x; Range[0, nn]! * CoefficientList[Series[x + a x, {x, 0, nn}], x]
Formula
E.g.f.: 1 - (1-2*x-x^2)^(1/2).
E.g.f.: x*(1+A(x)) where A(x) is the e.g.f. of A036774.
a(n) ~ sqrt(2-sqrt(2)) * n^(n-1) * (1+sqrt(2))^n / exp(n). - Vaclav Kotesovec, Sep 25 2013
From Benedict W. J. Irwin, May 25 2016: (Start)
Let y(0)=1, y(1)=-1, and (1-n)*y(n) - (2n+1)*y(n+1) + (n+2)*y(n+2) = 0,
a(n) = -n!y(n), n > 0. (End)
a(n) + (-2*n+3)*a(n-1) - (n-1)*(n-3)*a(n-2) = 0. - R. J. Mathar, Jun 08 2016
a(1)=1, a(2)=2 and a(n) = (1/2) * Sum_{k=1..n-1} C(n,k)*a(k)*a(n-k) for n>= 3. - Bérénice Delcroix-Oger, Jun 25 2025
Comments