A182042 Triangle T(n,k), read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, 0, -3/2, 3/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 0, 3, 0, 6, 9, 0, 9, 27, 27, 0, 12, 54, 108, 81, 0, 15, 90, 270, 405, 243, 0, 18, 135, 540, 1215, 1458, 729, 0, 21, 189, 945, 2835, 5103, 5103, 2187, 0, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 0, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
Offset: 0
Examples
Triangle begins: 1; 0, 3; 0, 6, 9; 0, 9, 27, 27; 0, 12, 54, 108, 81; 0, 15, 90, 270, 405, 243; 0, 18, 135, 540, 1215, 1458, 729; 0, 21, 189, 945, 2835, 5103, 5103, 2187;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Maple
T:= proc(n, k) option remember; if k=n then 3^n elif k=0 then 0 else binomial(n,k)*3^k fi; end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
-
Mathematica
With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
-
PARI
T(n,k) = if (k==0, 1, binomial(n,k)*3^k); matrix(10, 10, n, k, T(n-1,k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
-
Sage
@CachedFunction def T(n, k): if (k==n): return 3^n elif (k==0): return 0 else: return binomial(n,k)*3^k [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020
Formula
T(n,0) = 0^n; T(n,k) = binomial(n,k)*3^k for k > 0.
G.f.: (1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2).
T(n,k) = 2*T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k) -3*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 3, T(2,1) = 6, T(2,2) = 9 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A206735(n,k)*3^k.
Extensions
a(48) corrected by Georg Fischer, Feb 17 2020
Comments