cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182053 G.f. satisfies: A(x) = (1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 64, 159, 402, 1032, 2677, 7010, 18510, 49220, 131691, 354282, 957745, 2600382, 7088008, 19388719, 53207441, 146444424, 404151643, 1118132954, 3100540971, 8615945102, 23989662824, 66917894562, 186983937758, 523314016245, 1466807316032
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 64*x^6 + 159*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 36*x^4 + 94*x^5 + 249*x^6 + 660*x^7 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 81*x^4 + 231*x^5 + 656*x^6 + 1848*x^7 +...
where A(x) = 1 + x*(1+x+x^2)*A(x) + x^3*(1+x+x^2)*A(x)^2 + x^6*A(x)^3.
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 168*x^6/6 + 456*x^7/7 + 1255*x^8/8 + 3493*x^9/9 + 9753*x^10/10 +...
		

Crossrefs

Cf. A004148.

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x^2*A)*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,40,print1(a(n),", "))

Formula

Recurrence: 5*(n+2)*(n+3)*(8911*n^7 - 241946*n^6 + 2447725*n^5 - 11084372*n^4 + 19415458*n^3 + 1716316*n^2 - 23882064*n + 2130912)*a(n) = 3*(n+2)*(35644*n^8 - 914318*n^7 + 8350054*n^6 - 29810773*n^5 + 11813540*n^4 + 124863372*n^3 - 96624130*n^2 - 116648601*n + 36899532)*a(n-1) + (17822*n^9 - 448248*n^8 + 3870267*n^7 - 11783352*n^6 - 5744844*n^5 + 67908444*n^4 - 29523545*n^3 - 131900220*n^2 - 65428308*n - 24231312)*a(n-2) + (178220*n^9 - 4749810*n^8 + 45912714*n^7 - 180749091*n^6 + 117079677*n^5 + 903637509*n^4 - 1481741315*n^3 - 502308600*n^2 + 1275968592*n - 5383800)*a(n-3) - 3*(26733*n^9 - 752571*n^8 + 7896778*n^7 - 35859478*n^6 + 44913322*n^5 + 151779908*n^4 - 435106847*n^3 + 135598205*n^2 + 327138534*n - 194418504)*a(n-4) + (17822*n^9 - 528447*n^8 + 6031992*n^7 - 32027385*n^6 + 65161374*n^5 + 61817937*n^4 - 383729654*n^3 + 245358135*n^2 + 217471338*n - 55404648)*a(n-5) + 2*(17822*n^9 - 555180*n^8 + 6785304*n^7 - 40187787*n^6 + 104743872*n^5 + 17193252*n^4 - 685093274*n^3 + 1082675799*n^2 + 285222672*n - 1131441048)*a(n-6) - (17822*n^9 - 581913*n^8 + 7681743*n^7 - 51193035*n^6 + 163962759*n^5 - 87813864*n^4 - 868874108*n^3 + 1698086052*n^2 + 415801800*n - 1243151064)*a(n-7) - (35644*n^9 - 1217292*n^8 + 16363266*n^7 - 106473036*n^6 + 307618491*n^5 - 35551263*n^4 - 1688725327*n^3 + 2463079431*n^2 + 830567142*n - 2522003904)*a(n-8) + (n-8)*(35644*n^8 - 985606*n^7 + 10067008*n^6 - 43505557*n^5 + 43567930*n^4 + 201854264*n^3 - 417755448*n^2 - 116443773*n + 335593314)*a(n-9) - (n-9)*(n-8)*(8911*n^7 - 179569*n^6 + 1183180*n^5 - 2163052*n^4 - 4971815*n^3 + 14491649*n^2 + 4308780*n - 9489060)*a(n-10). - Vaclav Kotesovec, Mar 25 2014
a(n) ~ sqrt((s*(2-r-r^3*(s-1)+r^5*s))/(1+r+r^2+3*r^3*s))/ (2*sqrt(Pi)* n^(3/2)*r^(n+3/2)), where r = 0.34048516736982998257..., s = 3.7980384578075501949... are roots of the system of equations r + r^2 + r^3 + 2*r^3*s + 2*r^4*s + 2*r^5*s + 3*r^6*s^2 = 1, and (1 + r*s)*(1 + r^2*s)*(1 + r^3*s) = s. - Vaclav Kotesovec, Mar 25 2014