A218251
G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x^3*A(x)).
Original entry on oeis.org
1, 2, 5, 15, 48, 160, 550, 1937, 6954, 25355, 93633, 349490, 1316397, 4997306, 19100278, 73440718, 283876092, 1102466529, 4299673200, 16832894330, 66127276201, 260595497227, 1029913570587, 4081124171097, 16211144100379, 64539011439944, 257474646313530
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 15*x^3 + 48*x^4 + 160*x^5 + 550*x^6 +...
where
A(x) = 1 + (2+x^2)*x*A(x) + (1+2*x^2)*x^2*A(x)^2 + x^5*A(x)^3.
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)^2 * (1 + x^3*AGF) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
-
{a(n)=local(A=1); for(i=1, n, A=(1+x*A)^2*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
A211854
G.f. satisfies: A(x) = (1+x*A(x)^2)*(1+x^2*A(x)^2)*(1+x^3*A(x)^2).
Original entry on oeis.org
1, 1, 3, 11, 42, 173, 746, 3321, 15155, 70516, 333282, 1595620, 7722036, 37715028, 185661034, 920244770, 4588778327, 23003827327, 115867080623, 586089365947, 2975978506450, 15163583668774, 77507719810688, 397320926569995, 2042152353063874
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 42*x^4 + 173*x^5 + 746*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 28*x^3 + 115*x^4 + 496*x^5 + 2211*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 84*x^3 + 391*x^4 + 1844*x^5 + 8800*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 176*x^3 + 912*x^4 + 4674*x^5 + 23842*x^6 +...
where A(x) = 1 + x*(1+x+x^2)*A(x)^2 + x^3*(1+x+x^2)*A(x)^4 + x^6*A(x)^6.
-
{a(n)=local(A=1+x); for(i=1, n, A=(1+x*A^2)*(1+x^2*A^2)*(1+x^3*A^2)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
A211855
G.f. satisfies: A(x) = (1+x*A(x)^3)*(1+x^2*A(x)^2)*(1+x^3*A(x)).
Original entry on oeis.org
1, 1, 4, 19, 98, 553, 3288, 20287, 128681, 833889, 5496837, 36742204, 248454438, 1696588460, 11682677436, 81031854579, 565614332353, 3970182041035, 28006229772030, 198438070511163, 1411652452459443, 10078529348799106, 72192155099054325, 518659038159324250
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 98*x^4 + 553*x^5 + 3288*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 9*x^2 + 46*x^3 + 250*x^4 + 1454*x^5 + 8827*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 82*x^3 + 468*x^4 + 2808*x^5 + 17431*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 128*x^3 + 765*x^4 + 4736*x^5 + 30086*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 185*x^3 + 1155*x^4 + 7376*x^5 + 47970*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 254*x^3 + 1653*x^4 + 10884*x^5 + 72474*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^2 + x^3*(A(x)+A(x)^5) + x^4*A(x)^4 + x^5*A(x)^3 + x^6*A(x)^6.
-
{a(n)=local(A=1+x); for(i=1, n, A=(1+x*A^3)*(1+x^2*A^2)*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
A182267
G.f. satisfies: A(x) = (1+x*A(x))*(1+x^2*A(x)^2)*(1+x^3*A(x)).
Original entry on oeis.org
1, 1, 2, 6, 16, 46, 140, 435, 1382, 4474, 14687, 48787, 163703, 554009, 1888794, 6481220, 22366415, 77575617, 270277602, 945480612, 3319582632, 11693824752, 41318554495, 146399071577, 520042511448, 1851657641932, 6607352892709, 23624965371264
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 46*x^5 + 140*x^6 + 435*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 48*x^4 + 148*x^5 + 472*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 102*x^4 + 336*x^5 + 1124*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 185*x^4 + 648*x^5 + 2272*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*(A(x) + A(x)^3) + x^4*A(x)^2 + x^5*A(x)^3 + x^6*A(x)^4.
-
{a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x^2*A^2)*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
A212070
G.f. satisfies: A(x) = (1+x*A(x))*(1+x*A(x)^2)*(1+x*A(x)^3).
Original entry on oeis.org
1, 3, 21, 199, 2166, 25551, 317736, 4101292, 54429850, 738053745, 10180705447, 142408547576, 2015296793331, 28800644332829, 415060115307920, 6025247760182629, 88023011490624217, 1293147320502884759, 19092299095314415811, 283137984006724444796
Offset: 0
G.f.: A(x) = 1 + 3*x + 21*x^2 + 199*x^3 + 2166*x^4 + 25551*x^5 +..
Related expansions:
A(x)^2 = 1 + 6*x + 51*x^2 + 524*x^3 + 5967*x^4 + 72456*x^5 +...
A(x)^3 = 1 + 9*x + 90*x^2 + 1002*x^3 + 11970*x^4 + 150057*x^5 +...
A(x)^4 = 1 + 12*x + 138*x^2 + 1660*x^3 + 20823*x^4 + 269964*x^5 +...
A(x)^5 = 1 + 15*x + 195*x^2 + 2525*x^3 + 33255*x^4 + 446298*x^5 +...
A(x)^6 = 1 + 18*x + 261*x^2 + 3624*x^3 + 50076*x^4 + 695934*x^5 +...
where A(x) = 1 + x*A(x) + x*A(x)^2 + x*(1+x)*A(x)^3 + x^2*A(x)^4 + x^2*A(x)^5 + x^3*A(x)^6.
-
{a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x*A^2)*(1+x*A^3)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
A218250
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2.
Original entry on oeis.org
1, 1, 3, 7, 18, 49, 135, 383, 1104, 3228, 9554, 28557, 86095, 261487, 799323, 2457327, 7592620, 23565444, 73437284, 229691620, 720800824, 2268820824, 7161255962, 22661307317, 71878917199, 228487568175, 727779875401, 2322485254421, 7424488376794, 23773398866825
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 18*x^4 + 49*x^5 + 135*x^6 + 383*x^7 +...
where
A(x) = 1 + (1+2*x)*x*A(x) + (2+x)*x^3*A(x)^2 + x^5*A(x)^3.
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF) * (1 + x^2*AGF)^2 - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
-
{a(n)=local(A=1); for(i=1, n, A=(1+x*A)*(1+x^2*A)^2+x*O(x^n)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
Showing 1-6 of 6 results.