A364161
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)).
Original entry on oeis.org
1, 1, 2, 5, 15, 47, 153, 514, 1769, 6205, 22102, 79733, 290721, 1069688, 3966739, 14810348, 55627778, 210046102, 796864028, 3035912900, 11610468138, 44556451207, 171529074168, 662238211929, 2563524741603, 9947573055828, 38687704042595
Offset: 0
-
A364161 := proc(n)
add( binomial(n-2*k-1,k)*binomial(2*n-5*k+1,n-3*k)/(2*n5*k+1),k=0..floor(n/3)) ;
end proc:
seq(A364161(n),n=0..80); # R. J. Mathar, Aug 29 2023
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(2*n-5*k+1, n-3*k)/(2*n-5*k+1));
A364833
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)^3).
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 168, 595, 2160, 7997, 30083, 114660, 441840, 1718531, 6737820, 26600784, 105659970, 421949492, 1693120779, 6823018035, 27602090087, 112053680381, 456343848121, 1863893501065, 7633232165286, 31337360839387, 128944120202510
Offset: 0
-
A364833 := proc(n)
add( binomial(n-2*k-1,k)*binomial(2*n-3*k+1,n-3*k)/ (2*n-3*k+1),k=0..floor(n/3)) ;
end proc:
seq(A364833(n),n=0..80); # R. J. Mathar, Aug 29 2023
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(2*n-3*k+1, n-3*k)/(2*n-3*k+1));
A365247
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)^4).
Original entry on oeis.org
1, 1, 2, 5, 15, 50, 177, 650, 2449, 9412, 36761, 145518, 582556, 2354557, 9594898, 39378259, 162619316, 675258452, 2817643240, 11808576745, 49683880754, 209786559004, 888676860191, 3775654643360, 16084818268474, 68694452578325, 294053067958011
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(2*n-2*k+1, n-3*k)/(2*n-2*k+1));
A218250
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2.
Original entry on oeis.org
1, 1, 3, 7, 18, 49, 135, 383, 1104, 3228, 9554, 28557, 86095, 261487, 799323, 2457327, 7592620, 23565444, 73437284, 229691620, 720800824, 2268820824, 7161255962, 22661307317, 71878917199, 228487568175, 727779875401, 2322485254421, 7424488376794, 23773398866825
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 18*x^4 + 49*x^5 + 135*x^6 + 383*x^7 +...
where
A(x) = 1 + (1+2*x)*x*A(x) + (2+x)*x^3*A(x)^2 + x^5*A(x)^3.
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF) * (1 + x^2*AGF)^2 - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
-
{a(n)=local(A=1); for(i=1, n, A=(1+x*A)*(1+x^2*A)^2+x*O(x^n)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
A348666
a(n) is the number of quiddities of 3-periodic dissections of (n + 2)-gons.
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 166, 577, 2050, 7414, 27201, 100984, 378651, 1431901, 5454718, 20912754, 80630085, 312430832, 1216045522, 4752132953, 18638125275, 73340870891, 289463959745, 1145612705905, 4545478673125, 18077348646721, 72048928923617, 287733587217552, 1151233484320195
Offset: 0
-
{1}~Join~Array[Sum[(3 (k - s) + 2)/(# - s + 1)*Binomial[# - 3 k + s - 2, s]*Binomial[2 # - 3 k - s - 1, # - 3 k - 1], {k, 0, #/3}, {s, 0, k}] &, 29]
Showing 1-5 of 5 results.
Comments