cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182079 a(n) = floor(n*floor((n-1)/2)/3).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 7, 8, 12, 13, 18, 20, 26, 28, 35, 37, 45, 48, 57, 60, 70, 73, 84, 88, 100, 104, 117, 121, 135, 140, 155, 160, 176, 181, 198, 204, 222, 228, 247, 253, 273, 280, 301, 308, 330, 337, 360, 368, 392, 400, 425, 433, 459, 468, 495, 504, 532, 541, 570, 580, 610, 620, 651, 661, 693, 704, 737, 748, 782, 793, 828, 840, 876, 888, 925, 937, 975, 988
Offset: 0

Views

Author

N. J. A. Sloane, Apr 10 2012

Keywords

Comments

Maximal number of edge-disjoint cycles of complete graph on n nodes.

References

  • J.-C. Bermond, The circuit-hypergraph of a tournament. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 165--180. Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975. MR0396319 (53 #187)

Crossrefs

This is a lower bound on A003141. [Bermond]

Programs

  • Mathematica
    Table[Floor[(n/3)*Floor[(n - 1)/2]], {n, 0, 50}] (* G. C. Greubel, Aug 20 2017 *)
  • PARI
    a(n) = n*((n-1)\2)\3 \\ G. C. Greubel, Aug 20 2017

Formula

Empirical g.f.: x^3*(x^4+x^3+x^2+1)/((1-x)^3*(1+x)^2*(x^2-x+1)*(x^2+x+1) ). - Colin Barker, Nov 18 2012
The conjectured g.f. is correct. See links. - Sela Fried, Dec 27 2024