A182082 Number of pairs, (x,y), with x >= y, whose LCM does not exceed n.
1, 3, 5, 8, 10, 15, 17, 21, 24, 29, 31, 39, 41, 46, 51, 56, 58, 66, 68, 76, 81, 86, 88, 99, 102, 107, 111, 119, 121, 135, 137, 143, 148, 153, 158, 171, 173, 178, 183, 194, 196, 210, 212, 220, 228, 233, 235, 249, 252, 260, 265, 273, 275, 286, 291, 302, 307, 312
Offset: 1
Keywords
Examples
a(1000000) = 37429395, according to Project Euler problem #379.
Links
- Walt Rorie-Baety, Table of n, a(n) for n = 1..1000
- Project Euler, Problem 379: Least common multiple count.
Programs
-
Haskell
a n = length [(x,y)| x <- [1..n], y <- [x..n], lcm x y <= n]
-
Mathematica
Table[Count[Flatten[Table[LCM[i, j], {i, n}, {j, i, n}]], ?(# <= n &)], {n, 60}] (* _T. D. Noe, Apr 10 2012 *) nn = 100; (Accumulate[Table[DivisorSigma[0, n^2], {n, nn}]] + Range[nn])/2 (* T. D. Noe, Apr 10 2012 *)
-
PARI
a(n)=(sum(k=1,n,numdiv(k^2))+n)/2 \\ Charles R Greathouse IV, Apr 10 2012
Formula
a(n) = Sum_{k=1..n} (d(k^2)+1)/2, where d is the number of divisors function (A000005). - Charles R Greathouse IV, Apr 10 2012
a(n) = Sum_{k=1..n} A007875(k) * floor(n/k). - Daniel Suteu, Jan 08 2021
a(n) ~ n * log(n)^2 /(4*zeta(2)) (see A018892 for a more accurate asymptotic formula). - Amiram Eldar, Feb 01 2025
Comments