cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182086 Number of ways of making change for n Pfennig using Deutschmark coins.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 342, 357, 379, 394, 416, 438, 460, 482, 504, 526
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2012

Keywords

Comments

The Pfennig was the subunit of the Deutsche Mark, the currency of Germany until the adoption of the Euro in 2002; the coins were (business strike): 1 Pfg, 2 Pfg, 5 Pfg, 10 Pfg, 50 Pfg, 1 DM = 100 Pfg, 2 DM and 5 DM;
a(n) = A000008(n) for n < 50; a(50) = A000008(50) + 1 = 342;
a(n) = A001312(n) for n < 200; a(200) = A001312(200) + 1 = 26905.
Number of partitions of n into parts 1, 2, 5, 10, 50, 100, 200, and 500. - Joerg Arndt, Jul 08 2013

Examples

			Number of partitions of coin values into coin values:
a(1) = #{1} = 1;
a(2) = #{2, 1+1} = 2;
a(5) = #{5, 2+2+1, 2+1+1+1, 1+1+1+1+1} = 4;
a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11;
a(50) = #{50,10+10+10+10+10, 10+10+10+10+5+5, 10+10+10+10+5+2+2+1, 10+10+10+10+5+2+1+1+1, 10+10+10+10+5+10x1, ...} = 342;
a(100) = 2499;
a(200) = 26905;
a(500) = 1229587.
		

Crossrefs

Programs

  • Haskell
    a182086 = p [1,2,5,10,50,100,200,500] where
       p  0 = 1; p []  = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    
  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 - x^2)*(1 - x^5)*(1 - x^10)*(1 - x^50)*(1 - x^100)*(1 - x^200)*(1 - x^500)), {x, 0, 50}], x] (* G. C. Greubel, Aug 20 2017 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500))+O(x^566)) \\ Joerg Arndt, Jul 08 2013

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500)). - Joerg Arndt, Jul 08 2013