cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182094 Total area of the bounding boxes of all integer partitions of n.

Original entry on oeis.org

0, 1, 4, 10, 24, 47, 93, 162, 283, 462, 747, 1154, 1779, 2642, 3908, 5643, 8098, 11398, 15975, 22030, 30253, 41027, 55379, 73983, 98455, 129838, 170578, 222447, 289009, 373064, 479970, 613962, 782893, 993349, 1256546, 1582466, 1987365, 2485840, 3101146
Offset: 0

Views

Author

Alois P. Heinz, Apr 11 2012

Keywords

Examples

			a(4) = 24 = 4+6+4+6+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the bounding boxes have areas 4*1, 3*2, 2*2, 2*3, 1*4.
a(5) = 47 = 5+8+6+9+6+8+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        elif i<1 then [0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, n}, If[i < 1, {0, 0}, f = b[n, i - 1]; g = If[i > n, {0, 0}, b[n - i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := Sum[Sum[i, {i, b[n - j, Min[j, n - j]]}]*j, {j, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)

Formula

a(n) = A188814(n) + n*A000041(n) = A188814(n) + A066186(n).