cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182099 Total area of the largest inscribed rectangles of all integer partitions of n.

Original entry on oeis.org

0, 1, 4, 8, 18, 29, 54, 82, 136, 202, 309, 441, 658, 915, 1303, 1790, 2479, 3337, 4541, 6022, 8045, 10554, 13876, 17996, 23409, 30055, 38634, 49208, 62650, 79116, 99898, 125213, 156848, 195339, 242964, 300707, 371770, 457493, 562292, 688451, 841707, 1025484
Offset: 0

Views

Author

Alois P. Heinz, Apr 11 2012

Keywords

Comments

a(n) >= A000041(n)*A061017(n) for n>0 because the least largest inscribed rectangle of any integer partition of n is A061017(n) and A000041(n) is the number of partitions of n.
a(n) >= A116503(n), the sum of the areas of the Durfee squares of all partitions of n.

Examples

			a(4) = 18 = 4+3+4+3+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the largest inscribed rectangles have areas 4*1, 3*1, 2*2, 1*3, 1*4.
a(5) = 29 = 5+4+4+3+4+4+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i=1, `if`(t+n>k, 0, 1), `if`(i<1, 0, b(n, i-1, t, k)
          +add(`if`(t+j>k/i, 0, b(n-i*j, i-1, t+j, k)), j=1..n/i))))
        end:
    a:= n-> add(k*(b(n, n, 0, k) -b(n, n, 0, k-1)), k=1..n):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n > k, 0, 1], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j > k/i, 0, b[n - i j, i - 1, t + j, k]], {j, 1, n/i}]]]];
    a[n_] := Sum[k(b[n, n, 0, k] - b[n, n, 0, k - 1]), {k, 1, n}];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A115723(n,k) for n>0, a(0) = 0.
a(n) = Sum_{k=1..n} k * (A182114(n,k) - A182114(n,k-1)).