A182099 Total area of the largest inscribed rectangles of all integer partitions of n.
0, 1, 4, 8, 18, 29, 54, 82, 136, 202, 309, 441, 658, 915, 1303, 1790, 2479, 3337, 4541, 6022, 8045, 10554, 13876, 17996, 23409, 30055, 38634, 49208, 62650, 79116, 99898, 125213, 156848, 195339, 242964, 300707, 371770, 457493, 562292, 688451, 841707, 1025484
Offset: 0
Keywords
Examples
a(4) = 18 = 4+3+4+3+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the largest inscribed rectangles have areas 4*1, 3*1, 2*2, 1*3, 1*4. a(5) = 29 = 5+4+4+3+4+4+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..175
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i=1, `if`(t+n>k, 0, 1), `if`(i<1, 0, b(n, i-1, t, k) +add(`if`(t+j>k/i, 0, b(n-i*j, i-1, t+j, k)), j=1..n/i)))) end: a:= n-> add(k*(b(n, n, 0, k) -b(n, n, 0, k-1)), k=1..n): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n > k, 0, 1], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j > k/i, 0, b[n - i j, i - 1, t + j, k]], {j, 1, n/i}]]]]; a[n_] := Sum[k(b[n, n, 0, k] - b[n, n, 0, k - 1]), {k, 1, n}]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 06 2020, after Alois P. Heinz *)
Comments