cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182114 Number of partitions of n with largest inscribed rectangle having area <= k; triangle T(n,k), 0<=n, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 5, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 5, 7, 11, 0, 0, 0, 0, 3, 7, 13, 15, 0, 0, 0, 0, 1, 5, 16, 18, 22, 0, 0, 0, 0, 0, 3, 17, 21, 27, 30, 0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42, 0, 0, 0, 0, 0, 0, 13, 21, 39, 48, 54, 56
Offset: 0

Views

Author

Alois P. Heinz, Apr 12 2012

Keywords

Comments

T(n,k) = A000041(k) for n
Sum_{n>=0} T(n,k) = A115725(k).

Examples

			T(5,4) = 5 because there are 5 partitions of 5 with largest inscribed rectangle having area <= 4: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4].
T(9,5) = 3: [1,1,1,2,4], [1,1,1,1,5], [1,1,2,5].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 3;
  0, 0, 0, 2, 5;
  0, 0, 0, 1, 5, 7;
  0, 0, 0, 0, 5, 7, 11;
  0, 0, 0, 0, 3, 7, 13, 15;
  0, 0, 0, 0, 1, 5, 16, 18, 22;
  0, 0, 0, 0, 0, 3, 17, 21, 27, 30;
  0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42;
  ...
		

Crossrefs

Diagonal gives: A000041.
T(n,n-1) = A144300(n) = A000041(n) - A000005(n).
T(n+d,n) for d=2-10 give: A218623, A218624, A218625, A218626, A218627, A218628, A218629, A218630, A218631.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i=1, `if`(t+n<=k, 1, 0), `if`(i<1, 0, b(n, i-1, t, k)+
           add(`if`(t+j<=k/i, b(n-i*j, i-1, t+j, k), 0), j=1..n/i))))
        end:
    T:= (n, k)-> b(n, n, 0, k):
    seq(seq(T(n, k), k=0..n), n=0..15);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n <= k, 1, 0], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j <= k/i, b[n - i*j, i - 1, t + j, k], 0], {j, 1, n/i}]]]] ; T[n_, k_] := b[n, n, 0, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=1..k} A115723(n,i) for n>0, T(0,0) = 1.