A182138 Irregular triangle T, read by rows, in which row n lists the distances between n and the two primes whose sum makes 2n in decreasing order (Goldbach conjecture).
0, 0, 1, 2, 0, 1, 4, 0, 5, 3, 4, 2, 7, 3, 8, 6, 0, 7, 5, 1, 10, 6, 0, 9, 3, 8, 4, 2, 13, 3, 14, 12, 6, 0, 13, 11, 5, 1, 12, 0, 17, 9, 3, 16, 10, 8, 2, 19, 15, 9, 20, 18, 6, 0, 19, 17, 13, 7, 5, 22, 18, 12, 6, 21, 15, 3, 20, 16, 14, 10, 4, 25, 15, 9, 24, 18, 12, 0, 23, 17, 13, 11, 7, 1
Offset: 2
Examples
n=2, 2n=4, 4=2+2, p=q=2 -> d=0. n=18, 2n=36, four prime pairs have a sum of 36: 5+31, 7+29, 13+23, 17+19, with the four distances d being 13=18-5=31-18, 11=18-7=29-18, 5=18-13=23-18, 1=18-17=19-18. Triangle begins: 0; 0; 1; 2, 0; 1; 4, 0; 5, 3; 4, 2; 7, 3; 8, 6, 0;
Links
- Alois P. Heinz, Rows n = 2..600, flattened
- OEIS (Plot 2), Plot of (n, d)
- Subplots for fixed p:
- OEIS (Plot 2), A067076 vs A098090 (p=3).
- OEIS (Plot 2), A089038 vs A089253 (p=5).
- OEIS (Plot 2), A105760 vs A089192 (p=7).
- ...
- OEIS (Plot 2), A153143 vs A097932 (p=19).
- Wikipedia, Goldbach's conjecture
Crossrefs
Programs
-
Magma
A182138:= func
; &cat[A182138(n):n in [2..30]]; // Jason Kimberley, Oct 01 2012 -
Maple
T:= n-> seq(`if`(isprime(p) and isprime(2*n-p), n-p, NULL), p=2..n): seq(T(n), n=2..40); # Alois P. Heinz, Apr 16 2012
-
Mathematica
T[n_] := Table[If[PrimeQ[p] && PrimeQ[2n-p], n-p, Nothing], {p, 2, n}]; Table[T[n], {n, 2, 30}] // Flatten (* Jean-François Alcover, Jan 09 2025, after Alois P. Heinz *)
-
PARI
for(n=2,18,forprime(p=2,n,if(isprime(2*n-p),print1(n-p", ")))) \\ Charles R Greathouse IV, Apr 16 2012
Formula
T(n,i) = n - A184995(n,i). - Jason Kimberley, Sep 25 2012
Comments