cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182221 Composite numbers in A182140 but not in A071700.

Original entry on oeis.org

255, 385, 34561, 65535, 147455, 195841, 1034881, 4070401, 4746241, 5040001, 16675201, 22704001, 36067201, 47013121, 83623935, 136967041, 168720001, 271878145, 549141119, 613092481, 836567041, 1039779841, 1049759999, 1548072961, 2556902401, 2646067201
Offset: 1

Views

Author

Keywords

Comments

A182140 includes the prime numbers and A071700.

Crossrefs

Programs

  • Mathematica
    fa=FactorInteger;isA071700[n_]:=Length@fa[n]==2&&fa[n][[1,2]]==fa[n][[2,2]]==1&&Mod[Sqrt[n+1],4]==0; A060968[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; A060968[1]=1; A060968[n_] := Product[A060968[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; A201629[n_]:=Which[Mod[n, 4]==1, (n-1), Mod[n, 4]==3, (n+1), True, n];
    Select[Range[10000], !isA071700[#]&&!PrimeQ[#]&&A060968[#]==A201629[#]&]
  • PARI
    isA071700(n)=my(k=sqrtint(n\16)); n==16*k^2+32*k+15 && isprime(4*k+3) && isprime(4*k+5)
    is(n)=if(isprime(n),return(0)); my(f=factor(n)[, 1]); n*prod(i=if(n%2, 1, 2), #f, if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4, 1, 2)==if(n%2,(n+1)\4*4,n) && !isA071700(n) \\ Charles R Greathouse IV, Jul 03 2013

Extensions

a(15)-a(23) from Charles R Greathouse IV, Jul 03 2013
a(24)-a(26) from Charles R Greathouse IV, Jul 05 2013

A071700 Product of twin primes of form (4*k+3,4*(k+1)+1), k>=0.

Original entry on oeis.org

15, 143, 3599, 5183, 11663, 32399, 36863, 51983, 57599, 97343, 121103, 176399, 186623, 359999, 435599, 685583, 1040399, 1065023, 1192463, 1327103, 1742399, 2039183, 2108303, 2214143, 2585663, 2624399, 2782223
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Crossrefs

Subsequence of A037074, A071700 and of A182140.
Cf. A071697, a(n) = A071698(n)*A071699(n).

Programs

  • Haskell
    a071700 n = a071700_list !! (n-1)
    a071700_list = [x * y | x <- [3, 7 ..], a010051' x == 1,
                            let y = x + 2, a010051' y == 1]
    -- Reinhard Zumkeller, Aug 05 2014
  • PARI
    for(k=0,1e3,if(isprime(4*k+3)&&isprime(4*k+5),print1(16*k^2+32*k +15", "))) \\ Charles R Greathouse IV, Jul 03 2013
    
  • PARI
    is(n)=my(k=sqrtint(n\16)); n==16*k^2+32*k+15 && isprime(4*k+3) && isprime(4*k+5) \\ Charles R Greathouse IV, Jul 03 2013
    
  • PARI
    is(n)=my(t); n%16==15 && issquare(n+1,&t) && isprime(t-1) && isprime(t+1) \\ Charles R Greathouse IV, Dec 12 2016
    
  • PARI
    list(lim)=my(v=List(),p=3); forprime(q=5,sqrtint(1+lim\1)+1, if(q-p==2 && p%4==3, listput(v,p*q)); p=q); Vec(v) \\ Charles R Greathouse IV, Dec 12 2016
    

Formula

a(n) >> n^2 log^4 n. - Charles R Greathouse IV, Jul 03 2013

A240960 Numbers m such that sigma(m) - phi(m) = tau(m)^omega(m), where sigma=A000203, phi=A000010, tau=A000005 and omega=A001221.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 05 2014

Keywords

Comments

a(n) = A182140(n) for n <= 35.
All primes p are in the sequence since (p+1) - (p-1) = 2^1. The first composites are 15, 119748396, 139254850, 187768485, 1420027536, 3991789984. A182140 seems unrelated. - Jens Kruse Andersen, Aug 05 2014

Crossrefs

Programs

  • Haskell
    a240960 n = a240960_list !! (n-1)
    a240960_list = filter (\x -> a051612 x == a110088 x) [1..]
    
  • Maple
    with(numtheory):
    filter:= n -> sigma(n) - phi(n) = tau(n)^nops(factorset(n)):
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2014
  • Mathematica
    Select[Range[300], DivisorSigma[1, #] - EulerPhi[#] == DivisorSigma[0, #]^PrimeNu[#]&] (* Jean-François Alcover, Mar 08 2019 *)
  • PARI
    is(n)=my(f=factor(n)); sigma(f)-eulerphi(f)==numdiv(f)^omega(f) \\ Charles R Greathouse IV, Nov 26 2014
  • Python
    from sympy import totient,divisors,divisor_count,primefactors
    filter(lambda x:sum(divisors(x))-totient(x)==divisor_count(x)**len(primefactors(x)), range(1,10**5)) # Chai Wah Wu, Aug 05 2014
    

A235864 G-Lehmer numbers: Composite numbers k such that A060968(k) divides A201629(k).

Original entry on oeis.org

15, 143, 255, 385, 3599, 5183, 11663, 32399, 34561, 36863, 51983, 57599, 65535, 97343, 121103, 147455, 176399, 186623, 195841, 359999, 435599, 685583, 1034881, 1040399, 1065023, 1192463, 1327103, 1742399, 2039183, 2108303, 2214143, 2585663, 2624399, 2782223, 3196943
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    fa=FactorInteger; phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], IntegerQ[FU[#]/phi[#]] && PrimeQ[#] == False &]

Extensions

a(29)-a(35) from Amiram Eldar, Nov 24 2023
Showing 1-4 of 4 results.