A182221 Composite numbers in A182140 but not in A071700.
255, 385, 34561, 65535, 147455, 195841, 1034881, 4070401, 4746241, 5040001, 16675201, 22704001, 36067201, 47013121, 83623935, 136967041, 168720001, 271878145, 549141119, 613092481, 836567041, 1039779841, 1049759999, 1548072961, 2556902401, 2646067201
Offset: 1
Keywords
Links
- J. M. Grau, A. M. Oller-Marcen, M. Rodríguez, D. Sadornil, Fermat test with gaussian base and Gaussian pseudoprimes, arXiv preprint arXiv:1401.4708 [math.NT], 2014.
Programs
-
Mathematica
fa=FactorInteger;isA071700[n_]:=Length@fa[n]==2&&fa[n][[1,2]]==fa[n][[2,2]]==1&&Mod[Sqrt[n+1],4]==0; A060968[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; A060968[1]=1; A060968[n_] := Product[A060968[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; A201629[n_]:=Which[Mod[n, 4]==1, (n-1), Mod[n, 4]==3, (n+1), True, n]; Select[Range[10000], !isA071700[#]&&!PrimeQ[#]&&A060968[#]==A201629[#]&]
-
PARI
isA071700(n)=my(k=sqrtint(n\16)); n==16*k^2+32*k+15 && isprime(4*k+3) && isprime(4*k+5) is(n)=if(isprime(n),return(0)); my(f=factor(n)[, 1]); n*prod(i=if(n%2, 1, 2), #f, if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4, 1, 2)==if(n%2,(n+1)\4*4,n) && !isA071700(n) \\ Charles R Greathouse IV, Jul 03 2013
Extensions
a(15)-a(23) from Charles R Greathouse IV, Jul 03 2013
a(24)-a(26) from Charles R Greathouse IV, Jul 05 2013
Comments