cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 78 results. Next

A074480 Multiplicative closure of twin prime pair products (A037074).

Original entry on oeis.org

1, 15, 35, 143, 225, 323, 525, 899, 1225, 1763, 2145, 3375, 3599, 4845, 5005, 5183, 7875, 10403, 11305, 11663, 13485, 18375, 19043, 20449, 22499, 26445, 31465, 32175, 32399, 36863, 39203, 42875, 46189, 50625, 51983, 53985, 57599, 61705
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 23 2002

Keywords

Examples

			a(99) = 1040399 = 1019*1021.
a(101) = 1090125 = (3*5)*(3*5)*(3*5)*(17*19).
a(103) = 1101275 = (5*7)*(5*7)*(29*31).
a(105) = 1126125 = (3*5)*(3*5)*(5*7)*(11*13).
		

Crossrefs

Cf. A071700 (subsequence).

Programs

  • Haskell
    import Data.Set (Set, singleton, delete, findMin, deleteFindMin, insert)
    a074480 n = a074480_list !! (n-1)
    a074480_list = multClosure a037074_list where
      multClosure []     = [1]
      multClosure (b:bs) = 1:h [b] (singleton b) bs where
       h cs s []    = m:h (m:cs) (foldl (flip insert) s' $ map (*m) cs) []
        where (m, s') = deleteFindMin s
       h cs s xs'@(x:xs)
        | m < x     = m:h (m:cs) (foldl (flip insert) s' $ map (*m) cs) xs'
        | otherwise = x:h (x:cs) (foldl (flip insert) s  $ map (*x) (x:cs)) xs
        where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Aug 14 2011
  • Mathematica
    max = 70000; t1 = Select[Prime /@ Range[PrimePi[Sqrt[max]]], PrimeQ[# + 2] &]; pairs = Join[{1}, t1*(t1 + 2)]; f[pairs_] := Outer[Times, pairs, pairs] // Flatten // Union // Select[#, # <= max &] &; FixedPoint[f, pairs] (* Jean-François Alcover, Dec 11 2012 *)

Formula

A072965(a(n)) = 1.
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/A037074(k)) = 1.117122860973... . - Amiram Eldar, Apr 13 2025

A136050 Sum of digits of product of twin primes A037074.

Original entry on oeis.org

6, 8, 8, 8, 26, 17, 26, 17, 8, 17, 17, 26, 26, 26, 17, 26, 35, 35, 26, 26, 8, 35, 26, 17, 26, 35, 44, 26, 17, 35, 35, 35, 35, 26, 35, 26, 17, 26, 26, 26, 17, 35, 26, 35, 26, 35, 26, 17, 26, 17, 35, 35, 26, 26, 35, 35, 26, 35, 26, 35, 26, 26, 26, 35, 26, 44, 35, 26, 26, 35, 44, 35
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Conjecture: except for the initial term, each term is one less than a multiple of 9. - Harvey P. Dale, Dec 02 2016

Examples

			The product of the first twin primes is 15=3*5, and sum of digits of 15 is 6.
		

Crossrefs

Programs

  • Mathematica
    a = {6}; Do[If[PrimeQ[6n - 1] && PrimeQ[6n + 1], c = IntegerDigits[36n^2 - 1]; b = Total[c]; AppendTo[a, b]], {n, 400}]; a
    Total[IntegerDigits[Times@@#]]&/@Select[Partition[Prime[Range[500]],2,1], #[[2]]- #[[1]]==2&] (* Harvey P. Dale, Dec 02 2016 *)
  • PARI
    lista(nn) = for (x=1, nn, if(prime(x+1)-prime(x)==2, print1(sumdigits(prime(x)*prime(x+1)), ", "))); \\ Michel Marcus, Nov 04 2013

Formula

a(n) = A007953(A037074(n)). - Michel Marcus, Nov 04 2013

Extensions

First term a(1)=6 inserted by Michel Marcus, Nov 04 2013

A162834 Primes of the form A037074(k) - 6, where A037074(k) is a twin prime product.

Original entry on oeis.org

29, 137, 317, 3593, 11657, 19037, 36857, 51977, 57593, 72893, 272477, 324893, 381917, 412157, 435593, 1065017, 1127837, 1633277, 1742393, 2214137, 2782217, 2883197, 3504377, 3802493, 3991997, 4112777, 4460537, 4536893, 7064957, 7354937, 7851197, 8999993, 9734393
Offset: 1

Views

Author

Giovanni Teofilatto, Jul 14 2009

Keywords

Crossrefs

Cf. A037074.
Cf. A099775. - R. J. Mathar, Jul 19 2009

Programs

  • Mathematica
    seq={}; Do[If[PrimeQ[n] && PrimeQ[n+2] && PrimeQ[(m = n^2 + 2n  - 6)], AppendTo[seq, m]], {n, 1, 1000}]; seq (* Amiram Eldar, Dec 20 2019 *)

Extensions

Definition corrected and more terms added by R. J. Mathar, Jul 19 2009
More terms from Amiram Eldar, Dec 20 2019

A135785 Union of A000040, A001248 and A037074.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Vladimir Shevelev, May 10 2008, May 16 2008

Keywords

Comments

a(n) possesses the following property: every i not exceeding a(n)/2 for which (a(n),i)>1 does not divide binomial(a(n)-i-1,i-1). Numbers with this property are called "binomial primes". There exist only nine binomial primes which are not terms of this sequence:1,6,8,10,12,20,21,24,33.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := PrimeQ[n] || (PrimeNu[n]<3 && Module[{p = FactorInteger[n][[1,1]]}, n==p^2 || (n==p(p+2) && PrimeQ[p+2])]); Select[Range[2, 250], aQ] (* Amiram Eldar, Dec 04 2018 *)
  • PARI
    isok(n) = isprime(n) || (issquare(n) && isprime(sqrtint(n))) || (issquare(n+1) && isprime(sqrtint(n+1)-1) && isprime(sqrtint(n+1)+1)); \\ Michel Marcus, Dec 04 2018

Extensions

Missing 47 and more terms from Michel Marcus, Dec 04 2018

A352616 Numbers k such that A155085(k) is in A037074.

Original entry on oeis.org

7, 17, 50, 71, 449, 851, 881, 1467, 2591, 5123, 9521, 18167, 29817, 34859, 38027, 39761, 52415, 84359, 90611, 92711, 106721, 147267, 179999, 204479, 206081, 342791, 388961, 596231, 606609, 847601, 922607, 1060307, 1256879, 1292831, 1389671, 1590983, 1976015, 2157227, 2169971, 2268449, 2571911
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 23 2022

Keywords

Comments

Numbers k such that k + A000203(k) is the product of a twin prime pair.

Examples

			a(3) = 50 is a term because 50 + A000203(50) = 143 = 11*13 where (11,13) is a twin prime pair.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t,s; t:= n + numtheory:-sigma(n);
      if t::even or not issqr(t+1) then return false fi;
      s:= sqrt(t+1);
      isprime(s+1) and isprime(s-1)
    end proc:
    select(filter, [$1..3000000]);

A008472 Sum of the distinct primes dividing n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, 2, 17, 5, 19, 7, 10, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 14, 19, 12, 5, 37, 21, 16, 7, 41, 12, 43, 13, 8, 25, 47, 5, 7, 7, 20, 15, 53, 5, 16, 9, 22, 31, 59, 10, 61, 33, 10, 2, 18, 16, 67, 19, 26, 14, 71, 5, 73
Offset: 1

Views

Author

Keywords

Comments

Sometimes called sopf(n).
Sum of primes dividing n (without repetition) (compare A001414).
Equals A051731 * A061397 = inverse Mobius transform of [0, 2, 3, 0, 5, 0, 7, ...]. - Gary W. Adamson, Feb 14 2008
Equals row sums of triangle A143535. - Gary W. Adamson, Aug 23 2008
a(n) = n if and only if n is prime. - Daniel Forgues, Mar 24 2009
a(n) = n is a new record if and only if n is prime. - Zak Seidov, Jun 27 2009
a(A001043(n)) = A191583(n);
For n > 0: a(A000079(n)) = 2, a(A000244(n)) = 3, a(A000351(n)) = 5, a(A000420(n)) = 7;
a(A006899(n)) <= 3; a(A003586(n)) = 5; a(A033846(n)) = 7; a(A033849(n)) = 8; a(A033847(n)) = 9; a(A033850(n)) = 10; a(A143207(n)) = 10. - Reinhard Zumkeller, Jun 28 2011
For n > 1: a(n) = Sum(A027748(n,k): 1 <= k <= A001221(n)). - Reinhard Zumkeller, Aug 27 2011
If n is the product of twin primes (A037074), a(n) = 2*sqrt(n+1) = sqrt(4n+4). - Wesley Ivan Hurt, Sep 07 2013
From Wilf A. Wilson, Jul 21 2017: (Start)
a(n) + 2, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing mappings on a set with n elements.
a(n) + 3, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing partial mappings on a set with n elements.
(End)
The smallest m such that a(m) = n, or 0 if no such number m exists is A064502(n). The only integers that are not in the sequence are 1, 4 and 6. - Bernard Schott, Feb 07 2022

Examples

			a(18) = 5 because 18 = 2 * 3^2 and 2 + 3 = 5.
a(19) = 19 because 19 is prime.
a(20) = 7 because 20 = 2^2 * 5 and 2 + 5 = 7.
		

Crossrefs

First difference of A024924.
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), this sequence (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Haskell
    a008472 = sum . a027748_row  -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [n eq 1 select 0 else &+[p[1]: p in Factorization(n)]: n in [1..100]]; // Vincenzo Librandi, Jun 24 2017
    
  • Maple
    A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))):
    seq(A008472(i), i = 1..40); # Peter Luschny, Jan 31 2012
    A008472 := proc(n)
            add( d, d= numtheory[factorset](n)) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Prepend[Array[Plus @@ First[Transpose[FactorInteger[#]]] &, 100, 2], 0]
    Join[{0}, Rest[Total[Transpose[FactorInteger[#]][[1]]]&/@Range[100]]] (* Harvey P. Dale, Jun 18 2012 *)
    (* Requires version 7.0+ *) Table[DivisorSum[n, # &, PrimeQ[#] &], {n, 75}] (* Alonso del Arte, Dec 13 2014 *)
    Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    sopf(n) = local(fac=factor(n)); sum(i=1,matsize(fac)[1],fac[i,1])
    
  • PARI
    vector(100,n,vecsum(factor(n)[,1]~)) \\ Derek Orr, May 13 2015
    
  • PARI
    A008472(n)=vecsum(factor(n)[,1]) \\ M. F. Hasler, Jul 18 2015
    
  • Python
    from sympy import primefactors
    def A008472(n): return sum(primefactors(n)) # Chai Wah Wu, Feb 03 2022
  • Sage
    def A008472(n):
        return add(d for d in divisors(n) if is_prime(d))
    print([A008472(i) for i in (1..40)]) # Peter Luschny, Jan 31 2012
    
  • Sage
    [sum(prime_factors(n)) for n in range(1,74)] # Giuseppe Coppoletta, Jan 19 2015
    

Formula

Let n = Product_j prime(j)^k(j) where k(j) >= 1, then a(n) = Sum_j prime(j).
Additive with a(p^e) = p.
G.f.: Sum_{k >= 1} prime(k)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Dirichlet g.f.: primezeta(s-1)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p. - Wesley Ivan Hurt, Feb 04 2022
From Bernard Schott, Feb 07 2022: (Start)
For n > 0: a(A001020(n)) = 11, a(A001022(n)) = 13, a(A001026(n)) = 17, a(A001029(n)) = 19, a(A009967(n)) = 23, a(A009973(n)) = 29, a(A009975(n)) = 31, a(A009981(n)) = 37, a(A009985(n)) = 41, a(A009987(n)) = 43, a(A009991(n)) = 47.
For p odd prime, a(2*p) = p+2 <==> a(A100484(n)) = A052147(n) for n > 1. (End)
a(n) = Sum_{d|n} d * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

A014574 Average of twin prime pairs.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488, 1608
Offset: 1

Views

Author

Keywords

Comments

With an initial 1 added, this is the complement of the closure of {2} under a*b+1 and a*b-1. - Franklin T. Adams-Watters, Jan 11 2006
Also the square root of the product of twin prime pairs + 1. Two consecutive odd numbers can be written as 2k+1,2k+3. Then (2k+1)(2k+3)+1 = 4(k^2+2k+1) = 4(k+1)^2, a perfect square. Since twin prime pairs are two consecutive odd numbers, the statement is true for all twin prime pairs. - Cino Hilliard, May 03 2006
Or, single (or isolated) composites. Nonprimes k such that neither k-1 nor k+1 is nonprime. - Juri-Stepan Gerasimov, Aug 11 2009
Numbers n such that sigma(n-1) = phi(n+1). - Farideh Firoozbakht, Jul 04 2010
Aside from the first term in the sequence, all remaining terms have digital root 3, 6, or 9. - J. W. Helkenberg, Jul 24 2013
Numbers n such that n^2-1 is a semiprime. - Thomas Ordowski, Sep 24 2015
Every term but the first is a multiple of 6. - Harvey P. Dale, Mar 31 2023

References

  • Archimedeans Problems Drive, Eureka, 30 (1967).

Crossrefs

A068507 is the intersection of A002182 and this sequence.

Programs

  • GAP
    a:=1+Filtered([1..2000],p->IsPrime(p) and IsPrime(p+2)); # Muniru A Asiru, May 20 2018
  • Haskell
    a014574 n = a014574_list !! (n-1)
    a014574_list = [x | x <- [2,4..], a010051 (x-1) == 1, a010051 (x+1) == 1]
    -- Reinhard Zumkeller, Apr 11 2012
    
  • Maple
    P := select(isprime,[$1..1609]): map(p->p+1,select(p->member(p+2,P),P)); # Peter Luschny, Mar 03 2011
    A014574 := proc(n) option remember; local p ; if n = 1 then 4 ; else p := nextprime( procname(n-1) ) ; while not isprime(p+2) do p := nextprime(p) ; od ; return p+1 ; end if ; end proc: # R. J. Mathar, Jun 11 2011
  • Mathematica
    Select[Table[Prime[n] + 1, {n, 260}], PrimeQ[ # + 1] &] (* Ray Chandler, Oct 12 2005 *)
    Mean/@Select[Partition[Prime[Range[300]],2,1],Last[#]-First[#]==2&] (* Harvey P. Dale, Jan 16 2014 *)
  • Maxima
    A014574(n) := block(
        if n = 1 then
            return(4),
        p : A014574(n-1) ,
        for k : 2 step 2 do (
            if primep(p+k-1) and primep(p+k+1) then
                return(p+k)
        )
    )$ /* R. J. Mathar, Mar 15 2012 */
    
  • PARI
    p=2;forprime(q=3,1e4,if(q-p==2,print1(p+1", "));p=q) \\ Charles R Greathouse IV, Jun 10 2011
    

Formula

a(n) = (A001359(n) + A006512(n))/2 = 2*A040040(n) = A054735(n)/2 = A111046(n)/4.
a(n) = A129297(n+4). - Reinhard Zumkeller, Apr 09 2007
A010051(a(n) - 1) * A010051(a(n) + 1) = 1. Reinhard Zumkeller, Apr 11 2012
a(n) = 6*A002822(n-1), n>=2. - Ivan N. Ianakiev, Aug 19 2013
a(n)^4 - 4*a(n)^2 = A062354(a(n)^2 - 1). - Raphie Frank, Oct 17 2013

Extensions

Offset changed to 1 by R. J. Mathar, Jun 11 2011

A007304 Sphenic numbers: products of 3 distinct primes.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426, 429, 430, 434, 435, 438
Offset: 1

Views

Author

Keywords

Comments

Note the distinctions between this and "n has exactly three prime factors" (A014612) or "n has exactly three distinct prime factors." (A033992). The word "sphenic" also means "shaped like a wedge" [American Heritage Dictionary] as in dentation with "sphenic molars." - Jonathan Vos Post, Sep 11 2005
Also the volume of a sphenic brick. A sphenic brick is a rectangular parallelepiped whose sides are components of a sphenic number, namely whose sides are three distinct primes. Example: The distinct prime triple (3,5,7) produces a 3x5x7 unit brick which has volume 105 cubic units. 3-D analog of 2-D A037074 Product of twin primes, per Cino Hilliard's comment. Compare with 3-D A107768 Golden 3-almost primes = Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. - Jonathan Vos Post, Jan 08 2007
Sum(n>=1, 1/a(n)^s) = (1/6)*(P(s)^3 - P(3*s) - 3*(P(s)*P(2*s)-P(3*s))), where P is prime zeta function. - Enrique Pérez Herrero, Jun 28 2012
Also numbers n with A001222(n)=3 and A001221(n)=3. - Enrique Pérez Herrero, Jun 28 2012
n = 265550 is the smallest n with a(n) (=1279789) < A006881(n) (=1279793). - Peter Dolland, Apr 11 2020

Examples

			From _Gus Wiseman_, Nov 05 2020: (Start)
Also Heinz numbers of strict integer partitions into three parts, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are counted by A001399(n-6) = A069905(n-3), with ordered version A001399(n-6)*6. The sequence of terms together with their prime indices begins:
     30: {1,2,3}     182: {1,4,6}     286: {1,5,6}
     42: {1,2,4}     186: {1,2,11}    290: {1,3,10}
     66: {1,2,5}     190: {1,3,8}     310: {1,3,11}
     70: {1,3,4}     195: {2,3,6}     318: {1,2,16}
     78: {1,2,6}     222: {1,2,12}    322: {1,4,9}
    102: {1,2,7}     230: {1,3,9}     345: {2,3,9}
    105: {2,3,4}     231: {2,4,5}     354: {1,2,17}
    110: {1,3,5}     238: {1,4,7}     357: {2,4,7}
    114: {1,2,8}     246: {1,2,13}    366: {1,2,18}
    130: {1,3,6}     255: {2,3,7}     370: {1,3,12}
    138: {1,2,9}     258: {1,2,14}    374: {1,5,7}
    154: {1,4,5}     266: {1,4,8}     385: {3,4,5}
    165: {2,3,5}     273: {2,4,6}     399: {2,4,8}
    170: {1,3,7}     282: {1,2,15}    402: {1,2,19}
    174: {1,2,10}    285: {2,3,8}     406: {1,4,10}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • "Sphenic", The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company, 2000.

Crossrefs

Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A162143 (a(n)^2).
For the following, NNS means "not necessarily strict".
A014612 is the NNS version.
A046389 is the restriction to odds (NNS: A046316).
A075819 is the restriction to evens (NNS: A075818).
A239656 gives first differences.
A285508 lists terms of A014612 that are not squarefree.
A307534 is the case where all prime indices are odd (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338557 is the case where all prime indices are even (NNS: A338556).
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers.
A008289 counts strict partitions by sum and length.
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).

Programs

  • Haskell
    a007304 n = a007304_list !! (n-1)
    a007304_list = filter f [1..] where
    f u = p < q && q < w && a010051 w == 1 where
    p = a020639 u; v = div u p; q = a020639 v; w = div v q
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Maple
    with(numtheory): a:=proc(n) if bigomega(n)=3 and nops(factorset(n))=3 then n else fi end: seq(a(n),n=1..450); # Emeric Deutsch
    A007304 := proc(n)
        option remember;
        local a;
        if n =1 then
            30;
        else
            for a from procname(n-1)+1 do
                if bigomega(a)=3 and nops(factorset(a))=3 then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Dec 06 2016
    is_a := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 3 and n = mul(P) end:
    A007304List := upto -> select(is_a, [seq(1..upto)]):  # Peter Luschny, Apr 14 2025
  • Mathematica
    Union[Flatten[Table[Prime[n]*Prime[m]*Prime[k], {k, 20}, {n, k+1, 20}, {m, n+1, 20}]]]
    Take[ Sort@ Flatten@ Table[ Prime@i Prime@j Prime@k, {i, 3, 21}, {j, 2, i - 1}, {k, j - 1}], 53] (* Robert G. Wilson v *)
    With[{upto=500},Sort[Select[Times@@@Subsets[Prime[Range[Ceiling[upto/6]]],{3}],#<=upto&]]] (* Harvey P. Dale, Jan 08 2015 *)
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==3&] (* Gus Wiseman, Nov 05 2020 *)
  • PARI
    for(n=1,1e4,if(bigomega(n)==3 && omega(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim)^(1/3),forprime(q=p+1,sqrt(lim\p),t=p*q;forprime(r=q+1,lim\t,listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1,3), forprime(q=p+1, sqrtint(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); Set(v) \\ Charles R Greathouse IV, Jan 21 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A007304(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024
    
  • SageMath
    def is_a(n):
        P = prime_divisors(n)
        return len(P) == 3 and prod(P) == n
    print([n for n in range(1, 439) if is_a(n)]) # Peter Luschny, Apr 14 2025

Formula

A008683(a(n)) = -1.
A000005(a(n)) = 8. - R. J. Mathar, Aug 14 2009
A002033(a(n)-1) = 13. - Juri-Stepan Gerasimov, Oct 07 2009, R. J. Mathar, Oct 14 2009
A178254(a(n)) = 36. - Reinhard Zumkeller, May 24 2010
A050326(a(n)) = 5, subsequence of A225228. - Reinhard Zumkeller, May 03 2013
a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Robert G. Wilson v, Jan 04 2006
Comment concerning number of divisors corrected by R. J. Mathar, Aug 14 2009

A000466 a(n) = 4*n^2 - 1.

Original entry on oeis.org

-1, 3, 15, 35, 63, 99, 143, 195, 255, 323, 399, 483, 575, 675, 783, 899, 1023, 1155, 1295, 1443, 1599, 1763, 1935, 2115, 2303, 2499, 2703, 2915, 3135, 3363, 3599, 3843, 4095, 4355, 4623, 4899, 5183, 5475, 5775, 6083, 6399, 6723, 7055, 7395
Offset: 0

Views

Author

Chan Siu Kee (skchan5(AT)hkein.ie.cuhk.hk)

Keywords

Comments

Sum_{n>=1} (-1)^n*a(n)/n! = 1 - 1/e = A068996. - Gerald McGarvey, Nov 06 2007
Sequence arises from reading the line from -1, in the direction -1, 15, ... and the same line from 3, in the direction 3, 35, ..., in the square spiral whose nonnegative vertices are the squares A000290. - Omar E. Pol, May 24 2008
a(n) is the product of the consecutive odd integers 2n-1 and 2n+1 (cf. A005408). - Doug Bell, Mar 08 2009
For n>0: a(n) = A176271(2*n,n); cf. A016754, A053755. - Reinhard Zumkeller, Apr 13 2010
a(n+1) gives the curvature c(n) of the n-th circle touching the two equal semicircles of the symmetric arbelos (1/2, 1/2) and the (n-1)-st circle, with input c(0) = 3 = A059100(1) (referring to the second circle of the Pappus chain), for n >= 0. - Wolfdieter Lang and Kival Ngaokrajang, Jul 03 2015
After 3, a(n) is pseudoprime to base 2n. For example: (2*2)^(a(2)-1) == 1 (mod a(2)), in fact 4^14 = 15*17895697+1. - Bruno Berselli, Sep 24 2015
Numbers m such that m+1 and (m+1)/4 are squares. - Bruno Berselli, Mar 03 2016
After -1, the least common multiple of 2*m+1 and 2*m-1. - Colin Barker, Feb 11 2017
This sequence contains all products of the twin prime pairs (see A037074). - Charles Kusniec, Oct 03 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
  • L. B. W. Jolley, Summation of Series, Dover, 2nd ed., 1961.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
  • A. Languasco and A. Zaccagnini, Manuale di Crittografia, Ulrico Hoepli Editore (2015), p. 259.

Crossrefs

Factor of A160466. Superset of A037074.
Cf. A059100 (curvatures for a Pappus chain).

Programs

Formula

O.g.f.: ( 1-6*x-3*x^2 ) / (x-1)^3 . - R. J. Mathar, Mar 24 2011
E.g.f.: (-1 + 4*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 26 2016
Sum_{n>=1} 1/a(n) = 1/2 [Jolley eq. 233]. - Benoit Cloitre, Apr 05 2002
Sum_{n>=1} 2/a(n) = 1 = 2/3 + 2/15 + 2/35 + 2/63 + 2/99 + 2/143, ..., with partial sums: 2/3, 4/5, 6/7, 8/9, 10/11, 12/13, 14/15, ... - Gary W. Adamson, Jun 16 2003
1/3 + Sum_{n>=2} 4/a(n) = 1 = 1/3 + 4/15 + 4/35 + 4/63, ..., with partial sums: 1/3, 3/5, 5/7, 7/9, 9/11, ..., (2n+1)/(2n+3). - Gary W. Adamson, Jun 18 2003
Sum_{n>=0} 2/a(2*n+1) = Pi/4 = 2/3 + 2/35 + 2/99, ... = (1 - 1/3) + (1/5 - 2/7) + (1/9 - 1/11) + ... = Sum_{n>=0} (-1)^n/(2*n+1). - Gary W. Adamson, Jun 22 2003
Product(n>=1, (a(n)+1)/a(n)) = Pi/2 (Wallis formula). - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 03 2004
a(n)+2 = A053755(n). - Zak Seidov, Jan 16 2007
a(n)^2 + A008586(n)^2 = A053755(n)^2 (Pythagorean triple). - Zak Seidov, Jan 16 2007
a(n) = a(n-1) + 8*n - 4 for n > 0, a(0)=-1. - Vincenzo Librandi, Dec 17 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - 1/2 = (A019669-1)/2. [Jolley eq (366)]. - R. J. Mathar, Mar 24 2011
For n>0, a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^3*(cos(x))^(2*n-2)). - Francesco Daddi, Aug 02 2011
Nonlinear recurrence for c(n) = a(n+1) (see the arbelos comment above) from Descartes' three circle theorem (see the links under A259555): c(n) = 4 + c(n-1) + 4*sqrt(c(n-1) + 1), with input c(0) = 3 = A059100(1), for n >= 0. The appropriate solution of this recurrence is c(n-1) + 1 = 4*n^2. - Wolfdieter Lang, Jul 03 2015
a(n) = 3*Pochhammer(5/2,n-1)/Pochhammer(1/2,n-1). Hence, the e.g.f. for a(n+1), i.e., dropping the first term, is 3* 1F1(5/2;1/2;x), with 1F1 being the confluent hypergeometric function (also known as Kummer's). - Stanislav Sykora, May 26 2016
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/sqrt(2))/sqrt(2). - Amiram Eldar, Feb 04 2021

A067611 Numbers of the form 6xy +- x +- y, where x, y are positive integers.

Original entry on oeis.org

4, 6, 8, 9, 11, 13, 14, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 34, 35, 36, 37, 39, 41, 42, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Jon Perry, Feb 01 2002

Keywords

Comments

Equivalently, numbers n such that either 6n-1 or 6n+1 is composite (or both are).
Numbers k such that 36*k^2 - 1 is not a product of twin primes. - Artur Jasinski, Dec 12 2007
Apart from initial zero, union of A046953 and A046954. - Reinhard Zumkeller, Jul 13 2014
From Bob Selcoe, Nov 18 2014: (Start)
Complementary sequence to A002822.
For all k >= 1, a(n) are the only positive numbers congruent to the following residue classes:
f == k (mod 6k+-1);
g == (5k-1) (mod 6k-1);
h == (5k+1) (mod 6k+1).
All numbers in classes g and h will be in this sequence; for class f, the quotient must be >= 1.
When determining which numbers are contained in this sequence, it is only necessary to evaluate f, g and h when the moduli are prime and the dividends are >= 2*k*(3*k - 1) (i.e., A033579(k)).
(End)
From Jason Kimberley, Oct 14 2015: (Start)
Numbers n such that A001222(A136017(n)) > 2.
The disjoint union of A060461, A121763, and A121765.
(End)
From Ralf Steiner, Aug 08 2018 (Start)
Conjecture 1: With u(k) = floor(k(k + 1)/4) one has A071538(a(u(k))*6) = a(u(k)) - u(k) + 1, for k >= 2 (u > 1).
Conjecture 2: In the interval [T(k-1)+1, T(k)], with T(k) = A000217(k), k >= 2, there exists at least one number that is not a member of the present sequence. (End)
Also: numbers of the form n*p +- round(p/6) with some positive integer n and prime p >= 5. [Proof available on demand.] - M. F. Hasler, Jun 25 2019

Examples

			4 = 6ab - a - b with a = 1, b = 1.
6 = 6ab + a - b or 6ab - a + b with a = 1, b = 1.
5 cannot be obtained by any values of a and b in 6ab - a - b, 6ab - a + b, 6ab + a - b or 6ab + a + b.
		

Crossrefs

Cf. A323674 (numbers 6xy +- x +- y including repetitions). - Sally Myers Moite, Jan 27 2019

Programs

  • GAP
    Filtered([1..120], k-> not IsPrime(6*k-1) or not IsPrime(6*k+1)) # G. C. Greubel, Feb 21 2019
  • Haskell
    a067611 n = a067611_list !! (n-1)
    a067611_list = map (`div` 6) $
       filter (\x -> a010051' (x-1) == 0 || a010051' (x+1) == 0) [6,12..]
    -- Reinhard Zumkeller, Jul 13 2014
    
  • Magma
    [n: n in [1..100] | not IsPrime(6*n-1) or not IsPrime(6*n+1)]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    filter:= n -> not isprime(6*n+1) or not isprime(6*n-1):
    select(filter, [$1..1000]); # Robert Israel, Nov 18 2014
  • Mathematica
    Select[Range[100], !PrimeQ[6# - 1] || !PrimeQ[6# + 1] &]
    Select[Range[100],AnyTrue[6#+{1,-1},CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 05 2019 *)
  • PARI
    for(n=1, 1e2, if(!isprime(6*n+1) || !isprime(6*n-1), print1(n", "))) \\ Altug Alkan, Nov 10 2015
    
  • Sage
    [n for n in (1..120) if not is_prime(6*n-1) or not is_prime(6*n+1)] # G. C. Greubel, Feb 21 2019
    

Extensions

Edited by Robert G. Wilson v, Feb 05 2002
Edited by Dean Hickerson, May 07 2002
Showing 1-10 of 78 results. Next