cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A002822 Numbers m such that 6m-1, 6m+1 are twin primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 12, 17, 18, 23, 25, 30, 32, 33, 38, 40, 45, 47, 52, 58, 70, 72, 77, 87, 95, 100, 103, 107, 110, 135, 137, 138, 143, 147, 170, 172, 175, 177, 182, 192, 205, 213, 215, 217, 220, 238, 242, 247, 248, 268, 270, 278, 283, 287, 298, 312, 313, 322, 325
Offset: 1

Views

Author

Keywords

Comments

6m-1 and 6m+1 are twin primes iff m is not of the form 6ab +- a +- b. - Jon Perry, Feb 01 2002
The above equivalence was rediscovered by Balestrieri, see link. - Charles R Greathouse IV, Jul 05 2011
Even terms correspond to twin primes of the form (4k - 1, 4k + 1), odd terms to twin primes of the form (4k + 1, 4k + 3). - Lekraj Beedassy, Apr 03 2002
From Bob Selcoe, Nov 28 2014: (Start)
Except for a(1)=1, all numbers in this sequence are congruent to (0, 2 or 3) mod 5.
It appears that when a(n)=6j, then j is also in the sequence (e.g., 138 = 6*23; 312 = 6*52). This also appears to hold for sequence A191626. If true, then it suggests that when seeking large twin primes, good candidates might be 36*a(n) +- 1, n >= 2.
Conjecture: There is at least one number in the sequence in the interval [5k, 7k] inclusive, k >= 1. If true, then the twin prime conjecture also is true.
(End)
A counterexample to "It appears that ...": Take j = 63. Then 6j = 378 and 36j = 2268. Now 379, 2267, and 2269 are prime, but 377 = 13 * 29. The sequence of counterexamples is A263282. - Jason Kimberley, Oct 13 2015
Dinculescu calls all terms in the sequence "twin ranks", and all other positive integers "non-ranks", see links. Non-ranks are given by the formula kp +- round(p/6) for positive integers k and primes p > 4, while twin ranks (this sequence) cannot be represented as kp +- round(p/6) for any k, p > 4. Here round(p/6) is the nearest integer to p/6. - Alexei Kourbatov, Jan 03 2015
Number of terms less than 10^k: 0, 5, 25, 142, 810, 5330, 37915, ... - Muniru A Asiru, Jan 24 2018
6m-1 and 6m+1 are twin primes iff 36m^2-1 is semiprime. It is algebraically provable that 36m^2-1 having any factor of the form 6k+-1 is equivalent to the statement that m is congruent to +-k (mod (6k+-1)). Other than the trivial case m=k, the fact of such a congruence means 36m^2-1 has a factor other than 6m-1 and 6m+1, and is not semiprime. Thus, {a(n)} lists the numbers m such that for all k < m, m is not congruent to +-k modulo (6k+-1). This is an alternative formulation of the results of Dinculescu referenced above. - Keith Backman, Apr 25 2021
Other than a(1)=1, it is provable that a(n) is not a square unless it is a multiple of 5, and a(n) is not a cube unless it is a multiple of 7. Examples of the former include a(11)=5^2=25, a(26)=10^2=100, and a(166)=35^2=1225; examples of the latter are rarer, including a(1531)=28^3=21952 and a(4163)=42^3=74088. - Keith Backman, Jun 26 2021

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 69.
  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A067611.
Intersection of A024898 and A024899.
A191626 is a subsequence.

Programs

  • Haskell
    a002822 n = a002822_list !! (n-1)
    a002822_list = f a000040_list where
       f (q:ps'@(p:ps)) | p > q + 2 || r > 0 = f ps'
                        | otherwise = y : f ps where (y,r) = divMod (q + 1) 6
    -- Reinhard Zumkeller, Jul 13 2014
  • Magma
    [n: n in [1..200] | IsPrime(6*n+1) and IsPrime(6*n-1)] // Vincenzo Librandi, Nov 21 2010
    
  • Maple
    select(n -> isprime(6*n-1) and isprime(6*n+1), [$1..1000]); # Robert Israel, Jan 11 2015
  • Mathematica
    Select[ Range[350], PrimeQ[6# - 1] && PrimeQ[6# + 1] & ]
    Select[Range[400],AllTrue[6#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Jul 27 2022 *)
    #/6&/@Select[Range[6,2500,6],AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Mar 31 2023 *)
  • PARI
    select(primes(100),n->isprime(n-2)&&n>5)\6 \\ Charles R Greathouse IV, Jul 05 2011
    
  • PARI
    p=5; forprime(q=5, 1e4, if(q-p==2, print1((p+1)/6", ")); p=q); \\ Altug Alkan, Oct 13 2015
    
  • PARI
    list(lim)=my(v=List(),p=5); forprime(q=7,6*lim+1, if(q-p==2, listput(v,q\6)); p=q); Vec(v) \\ Charles R Greathouse IV, Dec 03 2016
    

Formula

a(n) = A014574(n+1)/6. - Ivan N. Ianakiev, Aug 19 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001

A038509 Composite numbers congruent to +-1 mod 6.

Original entry on oeis.org

25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 385
Offset: 1

Views

Author

Keywords

Comments

Or, composite numbers with smallest prime factor >= 5.
Or, nonprime numbers n such that binomial(n+3, 3) mod n == 1. - Hieronymus Fischer, Sep 30 2007
Note that the primes > 3 are congruent to +-1 mod 6.
This sequence differs from A067793 (composite n such that phi(n) > 2n/3) starting at 385. Numbers in this sequence but not in A067793 are 385, 455, 595, 665, 805, 1015, 1085, 1925, 2275, 2695, etc. See A069043. - R. J. Mathar, Jun 08 2008 and Zak Seidov, Nov 02 2011
Intersection of A002808 and A007310. - Reinhard Zumkeller, Jun 30 2012
The product (24/25) * (36/35) * (48/49) * (54/55) * (66/65) * (78/77) * (84/85) * (90/91) * ... * ((6*k)/a(n)) * ... = Pi^2/(6*sqrt(3)), where 6*k is the nearest number to a(n), with k in A067611 but not in A002822. (See A258414.) - Dimitris Valianatos, Mar 27 2017

Crossrefs

Cf. A171993 (nonprimes of the form 3*k+-1).
Cf. A069043, A067793 (composite n such that phi(n) > 2n/3).

Programs

  • Haskell
    a038509 n = a038509_list !! (n-1)
    a038509_list = [x | x <- a002808_list, gcd x 6 == 1]
    -- Reinhard Zumkeller, Aug 05 2014, Jun 30 2012
    
  • Maple
    A038509 := proc(n)
        option remember;
        if n = 1 then
            25;
        else
            for a from procname(n-1)+1 do
                if not isprime(a) and modp(a,6) in {1,5} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A038509(n),n=1..30) ; # R. J. Mathar, Feb 28 2020
  • Mathematica
    Select[Range[1000], FactorInteger[#][[1,1]] >= 5 && ! PrimeQ[#] &] (* Robert G. Wilson v, Dec 19 2009 *)
    With[{nn=400},Select[Rest[Complement[Range[nn],Prime[Range[ PrimePi[ nn]]]]], MemberQ[ {1,5},Mod[#,6]]&]] (* Harvey P. Dale, Feb 21 2013 *)
    Select[Range[400],CompositeQ[#]&&MemberQ[{1,5},Mod[#,6]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    is(n)=gcd(n,6)==1 && !isprime(n) && n>7 \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012

Extensions

More terms from Robert G. Wilson v, Dec 19 2009
Entry revised by N. J. A. Sloane, Dec 31 2011, at the suggestion of Gary Detlefs

A046953 Numbers k such that 6*k - 1 is composite.

Original entry on oeis.org

6, 11, 13, 16, 20, 21, 24, 26, 27, 31, 34, 35, 36, 37, 41, 46, 48, 50, 51, 54, 55, 56, 57, 61, 62, 63, 66, 68, 69, 71, 73, 76, 79, 81, 83, 86, 88, 89, 90, 91, 92, 96, 97, 101, 102, 104, 105, 106, 111, 112, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128
Offset: 1

Views

Author

Keywords

Comments

These numbers can be written as 6*x*y + x - y for x > 0, y > 0. - Ron R Spencer, Aug 01 2016

Examples

			a(1)=6 because 6*6 - 1 = 35, which is composite.
		

Crossrefs

Cf. A046954, A008588, A016969, subsequence of A067611.
Cf. A024898 (complement).

Programs

  • GAP
    Filtered([1..200], k-> not IsPrime(6*k-1)) # G. C. Greubel, Feb 21 2019
  • Haskell
    a046953 n = a046953_list !! (n-1)
    a046953_list = map (`div` 6) $
       filter ((== 0) . a010051' . subtract 1) [6,12..]
    -- Reinhard Zumkeller, Jul 13 2014
    
  • Magma
    [n: n in [1..200] | not IsPrime(6*n-1)]; // G. C. Greubel, Feb 21 2019
    
  • Maple
    remove(k-> isprime(6*k-1), [$1..130])[]; # Muniru A Asiru, Feb 22 2019
  • Mathematica
    Select[Range[200],!PrimeQ[6#-1]&] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
  • PARI
    is(n)=!isprime(6*n-1) \\ Charles R Greathouse IV, Aug 01 2016
    
  • Sage
    [n for n in (1..200) if not is_prime(6*n-1)] # G. C. Greubel, Feb 21 2019
    

Formula

a(n) ~ n. - Charles R Greathouse IV, Aug 01 2016

A046954 Numbers k such that 6*k + 1 is nonprime.

Original entry on oeis.org

0, 4, 8, 9, 14, 15, 19, 20, 22, 24, 28, 29, 31, 34, 36, 39, 41, 42, 43, 44, 48, 49, 50, 53, 54, 57, 59, 60, 64, 65, 67, 69, 71, 74, 75, 78, 79, 80, 82, 84, 85, 86, 88, 89, 92, 93, 94, 97, 98, 99, 104, 106, 108, 109, 111, 113, 114, 116, 117, 119, 120, 124, 127, 129, 130, 132, 133, 134, 136, 139, 140
Offset: 1

Views

Author

Keywords

Comments

Equals A171696 U A121763; A121765 U A171696 = A046953; A121763 U A121765 = A067611 where A067611 U A002822 U A171696 = A001477. - Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
These numbers (except 0) can be written as 6xy +-(x+y) for x > 0, y > 0. - Ron R Spencer, Aug 01 2016

Examples

			a(2)=8 because 6*8 + 1 = 49, which is composite.
		

Crossrefs

Cf. A047845 (2n+1), A045751 (4n+1), A127260 (8n+1).
Cf. A046953, A008588, A016921, subsequence of A067611, complement of A024899.

Programs

  • GAP
    Filtered([0..250], k-> not IsPrime(6*k+1)) # G. C. Greubel, Feb 21 2019
  • Haskell
    a046954 n = a046954_list !! (n-1)
    a046954_list = map (`div` 6) $ filter ((== 0) . a010051' . (+ 1)) [0,6..]
    -- Reinhard Zumkeller, Jul 13 2014
    
  • Magma
    [n: n in [0..250] | not IsPrime(6*n+1)]; // G. C. Greubel, Feb 21 2019
    
  • Maple
    remove(k-> isprime(6*k+1), [$0..140])[]; # Muniru A Asiru, Feb 22 2019
  • Mathematica
    a = Flatten[Table[If[PrimeQ[6*n + 1] == False, n, {}], {n, 0, 50}]] (* Roger L. Bagula, May 17 2007 *)
    Select[Range[0, 200], !PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Sep 27 2013 *)
  • PARI
    is(n)=!isprime(6*n+1) \\ Charles R Greathouse IV, Aug 01 2016
    
  • Sage
    [n for n in (0..250) if not is_prime(6*n+1)] # G. C. Greubel, Feb 21 2019
    

Extensions

Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar
Corrected by Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
Corrected by Vincenzo Librandi, Sep 27 2013

A070043 Numbers of the form 6*j*k+j+k for positive integers j and k.

Original entry on oeis.org

8, 15, 22, 28, 29, 36, 41, 43, 50, 54, 57, 60, 64, 67, 71, 78, 79, 80, 85, 92, 93, 98, 99, 104, 106, 113, 117, 119, 120, 127, 129, 132, 134, 136, 141, 145, 148, 154, 155, 158, 160, 162, 169, 171, 174, 176, 179, 183, 184, 190, 191, 193, 197, 204, 210, 211, 212
Offset: 1

Views

Author

Jon Perry, May 05 2002

Keywords

Comments

Equivalently, numbers r such that 6*r+1 has a nontrivial factor == 1 (mod 6).
These numbers, together with numbers of the form 6*j*k-j-k (A070799) are the numbers s for which 6*s+1 is composite (A046954). If we also add in the numbers of the form 6*j*k+j-k (A046953), we get the numbers t such that 6*t-1 and 6*t+1 do not form a pair of twin primes (A067611).
If N is the set of natural numbers, then the set N-{A070043 U A070799} are the numbers k that make 6*k+1 prime. - Pedro Caceres, Jan 22 2018

Examples

			41 = 6*2*3 + 2 + 3. Equivalently, 6*41+1 = (6*2+1)*(6*3+1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], MemberQ[Mod[Take[Divisors[6#+1], {2, -2}], 6], 1]&]

Extensions

Edited by Dean Hickerson and Vladeta Jovovic, May 07 2002

A307561 Numbers k such that both 6*k - 1 and 6*k + 5 are prime.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 14, 17, 18, 22, 28, 29, 32, 38, 39, 42, 43, 44, 52, 58, 59, 64, 74, 77, 84, 93, 94, 98, 99, 107, 108, 109, 113, 137, 143, 147, 157, 158, 162, 163, 169, 182, 183, 184, 197, 198, 203, 204, 213, 214, 217, 227, 228, 238, 239, 247, 248, 249, 259, 267, 268, 269, 312, 317, 318, 329, 333, 344
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 146 terms below 10^3, 831 terms below 10^4, 5345 terms below 10^5, 37788 terms below 10^6 and 280140 terms below 10^7.
Prime pairs differing by 6 are called "sexy" primes. Other prime pairs with difference 6 are of the form 6n + 1 and 6n + 7.
Numbers in this sequence are those which are not 6cd + c - d - 1, 6cd + c - d, 6cd - c + d - 1 or 6cd - c + d, that is, they are not (6c - 1)d + c - 1, (6c - 1)d + c, (6c + 1)d - c - 1 or (6c + 1)d - c.

Examples

			a(2) = 2, so 6(2) - 1 = 11 and 6(2) + 5 = 17 are both prime.
		

Crossrefs

Primes differing from each other by 6 are A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A059325.
Cf. also A307562, A307563.

Programs

  • Mathematica
    Select[Range[500], PrimeQ[6# - 1] && PrimeQ[6# + 5] &] (* Alonso del Arte, Apr 14 2019 *)
  • PARI
    is(k) = isprime(6*k-1) && isprime(6*k+5); \\ Jinyuan Wang, Apr 20 2019

A307562 Numbers k such that both 6*k + 1 and 6*k + 7 are prime.

Original entry on oeis.org

1, 2, 5, 6, 10, 11, 12, 16, 17, 25, 26, 32, 37, 45, 46, 51, 55, 61, 62, 72, 76, 90, 95, 100, 101, 102, 121, 122, 125, 137, 142, 146, 165, 172, 177, 181, 186, 187, 205, 215, 216, 220, 237, 241, 242, 247, 257, 270, 276, 277, 282, 290, 291, 292, 296, 297, 310, 311, 312, 331, 332, 335, 347, 355, 356, 380, 381, 390
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 138 such numbers between 1 and 1000.
Prime pairs that differ by 6 are called "sexy" primes. Other prime pairs that differ by 6 are of the form 6n - 1 and 6n + 5.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd - c - d, 6cd + c + d - 1 or 6cd + c + d, that is, they are not (6c - 1)d - c - 1, (6c - 1)d - c, (6c + 1)d + c - 1 or (6c + 1)d + c.

Examples

			a(3) = 5, so 6(5) + 1 = 31 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

For the primes see A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024899 and A153218.
Cf. also A307561, A307563.

Programs

  • Mathematica
    Select[Range[400], AllTrue[6 # + {1, 7}, PrimeQ] &] (* Michael De Vlieger, Apr 15 2019 *)
  • PARI
    isok(n) = isprime(6*n+1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A307563 Numbers k such that both 6k - 1 and 6k + 7 are prime.

Original entry on oeis.org

1, 2, 4, 5, 9, 10, 12, 15, 17, 22, 25, 29, 32, 39, 44, 45, 60, 65, 67, 72, 75, 80, 82, 94, 95, 99, 100, 109, 114, 117, 120, 124, 127, 137, 152, 155, 164, 169, 172, 177, 185, 194, 199, 204, 205, 214, 215, 220, 229, 240, 242, 247, 254, 260, 262, 267, 269, 270, 289, 304, 312, 330, 334, 347, 355, 359, 369, 374, 379, 389
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 140 such numbers between 1 and 1000.
These numbers correspond to all the prime pairs which differ by 8 except 3 and 11.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd + c - d, 6cd - c + d or 6cd + c + d - 1, that is, they are not (6c - 1)d - c - 1, (6c - 1)d + c, (6c + 1)d - c or (6c + 1)d + c - 1.

Examples

			a(4) = 5, so 6(5) - 1 = 29 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

The primes are A023202, A092402, A031926.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A153218.
Cf. also A307561, A307562.

Programs

  • Maple
    select(t -> isprime(6*t-1) and isprime(6*t+7), [$1..500]); # Robert Israel, May 27 2019
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A070799 Numbers of the form 6jk-j-k.

Original entry on oeis.org

4, 9, 14, 19, 20, 24, 29, 31, 34, 39, 42, 44, 48, 49, 53, 54, 59, 64, 65, 69, 74, 75, 79, 82, 84, 86, 88, 89, 94, 97, 99, 104, 108, 109, 111, 114, 116, 119, 124, 129, 130, 133, 134, 139, 140, 141, 144, 149, 150, 152, 154, 157, 159, 163, 164, 167, 169, 174, 179, 180
Offset: 1

Views

Author

Jon Perry, May 05 2002

Keywords

Comments

Equivalently, numbers n such that 6n+1 has a factor == 5 (mod 6).
These numbers, together with numbers of the form 6jk+j+k (A070043) are the numbers n for which 6n+1 is composite (A046954). If we also add in the numbers of the form 6jk+j-k (A046953), we get the numbers n such that 6n-1 and 6n+1 do not form a pair of twin primes (A067611).

Examples

			31 = 6*2*3 - 2 - 3. Equivalently, 6*31+1 = (6*2-1)*(6*3-1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], MemberQ[Mod[Take[Divisors[6#+1], {2, -2}], 6], 5]&]

Extensions

Edited by Dean Hickerson, May 07 2002

A323674 Square array, read by antidiagonals, of the positive integers 6cd +-c +-d = (6c +- 1)d +- c. Alternate rows (or columns) are numbers that differ by c from multiples of 6c - 1 or 6c + 1.

Original entry on oeis.org

4, 6, 6, 9, 8, 9, 11, 13, 13, 11, 14, 15, 20, 15, 14, 16, 20, 24, 24, 20, 16, 19, 22, 31, 28, 31, 22, 19, 21, 27, 35, 37, 37, 35, 27, 21, 24, 29, 42, 41, 48, 41, 42, 29, 24, 26, 34, 46, 50, 54, 54, 50, 46, 34, 26, 29, 36, 53, 54, 65, 60, 65, 54, 53, 36, 29, 31, 41, 57, 63, 71, 73, 73, 71, 63, 57, 41, 31
Offset: 1

Views

Author

Sally Myers Moite, Jan 23 2019

Keywords

Comments

This sequence without duplicates is A067611, which is the complement of A002822, the positive integers x for which 6x - 1 and 6x + 1 are twin primes.

Examples

			Square array begins:
   4,   6,   9,  11,  14,  16,  19,  21,  24,  26, ...
   6,   8,  13,  15,  20,  22,  27,  29,  34,  36, ...
   9,  13,  20,  24,  31,  35,  42,  46,  53,  57, ...
  11,  15,  24,  28,  37,  41,  50,  54,  63,  67, ...
  14,  20,  31,  37,  48,  54,  65,  71,  82,  88, ...
  16,  22,  35,  41,  54,  60,  73,  79,  92,  98, ...
  19,  27,  42,  50,  65,  73,  88,  96, 111, 119, ...
  21,  29,  46,  54,  71,  79,  96, 104, 121, 129, ...
  24,  34,  53,  63,  82,  92, 111, 121, 140, 150, ...
  26,  36,  57,  67,  88,  98, 119, 129, 150, 160, ...
  ...
Note that, for example, the third row (or column) contains numbers that differ by 2 from multiples of 11 = 6*2 - 1, and the eighth row contains numbers that differ by 4 from multiples of 25 = 6*4 + 1.
		

Crossrefs

The first and second rows are A047209 and A047336.
The diagonal is A062717, the numbers x for which 6*x + 1 is a perfect square.

Programs

  • PARI
    a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2);
    matrix(7, 7, n, k, a(n, k)) \\ Michel Marcus, Jan 25 2019

Formula

a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2), m,n >= 1.
Showing 1-10 of 16 results. Next