cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067611 Numbers of the form 6xy +- x +- y, where x, y are positive integers.

Original entry on oeis.org

4, 6, 8, 9, 11, 13, 14, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 34, 35, 36, 37, 39, 41, 42, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Jon Perry, Feb 01 2002

Keywords

Comments

Equivalently, numbers n such that either 6n-1 or 6n+1 is composite (or both are).
Numbers k such that 36*k^2 - 1 is not a product of twin primes. - Artur Jasinski, Dec 12 2007
Apart from initial zero, union of A046953 and A046954. - Reinhard Zumkeller, Jul 13 2014
From Bob Selcoe, Nov 18 2014: (Start)
Complementary sequence to A002822.
For all k >= 1, a(n) are the only positive numbers congruent to the following residue classes:
f == k (mod 6k+-1);
g == (5k-1) (mod 6k-1);
h == (5k+1) (mod 6k+1).
All numbers in classes g and h will be in this sequence; for class f, the quotient must be >= 1.
When determining which numbers are contained in this sequence, it is only necessary to evaluate f, g and h when the moduli are prime and the dividends are >= 2*k*(3*k - 1) (i.e., A033579(k)).
(End)
From Jason Kimberley, Oct 14 2015: (Start)
Numbers n such that A001222(A136017(n)) > 2.
The disjoint union of A060461, A121763, and A121765.
(End)
From Ralf Steiner, Aug 08 2018 (Start)
Conjecture 1: With u(k) = floor(k(k + 1)/4) one has A071538(a(u(k))*6) = a(u(k)) - u(k) + 1, for k >= 2 (u > 1).
Conjecture 2: In the interval [T(k-1)+1, T(k)], with T(k) = A000217(k), k >= 2, there exists at least one number that is not a member of the present sequence. (End)
Also: numbers of the form n*p +- round(p/6) with some positive integer n and prime p >= 5. [Proof available on demand.] - M. F. Hasler, Jun 25 2019

Examples

			4 = 6ab - a - b with a = 1, b = 1.
6 = 6ab + a - b or 6ab - a + b with a = 1, b = 1.
5 cannot be obtained by any values of a and b in 6ab - a - b, 6ab - a + b, 6ab + a - b or 6ab + a + b.
		

Crossrefs

Cf. A323674 (numbers 6xy +- x +- y including repetitions). - Sally Myers Moite, Jan 27 2019

Programs

  • GAP
    Filtered([1..120], k-> not IsPrime(6*k-1) or not IsPrime(6*k+1)) # G. C. Greubel, Feb 21 2019
  • Haskell
    a067611 n = a067611_list !! (n-1)
    a067611_list = map (`div` 6) $
       filter (\x -> a010051' (x-1) == 0 || a010051' (x+1) == 0) [6,12..]
    -- Reinhard Zumkeller, Jul 13 2014
    
  • Magma
    [n: n in [1..100] | not IsPrime(6*n-1) or not IsPrime(6*n+1)]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    filter:= n -> not isprime(6*n+1) or not isprime(6*n-1):
    select(filter, [$1..1000]); # Robert Israel, Nov 18 2014
  • Mathematica
    Select[Range[100], !PrimeQ[6# - 1] || !PrimeQ[6# + 1] &]
    Select[Range[100],AnyTrue[6#+{1,-1},CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 05 2019 *)
  • PARI
    for(n=1, 1e2, if(!isprime(6*n+1) || !isprime(6*n-1), print1(n", "))) \\ Altug Alkan, Nov 10 2015
    
  • Sage
    [n for n in (1..120) if not is_prime(6*n-1) or not is_prime(6*n+1)] # G. C. Greubel, Feb 21 2019
    

Extensions

Edited by Robert G. Wilson v, Feb 05 2002
Edited by Dean Hickerson, May 07 2002

A070043 Numbers of the form 6*j*k+j+k for positive integers j and k.

Original entry on oeis.org

8, 15, 22, 28, 29, 36, 41, 43, 50, 54, 57, 60, 64, 67, 71, 78, 79, 80, 85, 92, 93, 98, 99, 104, 106, 113, 117, 119, 120, 127, 129, 132, 134, 136, 141, 145, 148, 154, 155, 158, 160, 162, 169, 171, 174, 176, 179, 183, 184, 190, 191, 193, 197, 204, 210, 211, 212
Offset: 1

Views

Author

Jon Perry, May 05 2002

Keywords

Comments

Equivalently, numbers r such that 6*r+1 has a nontrivial factor == 1 (mod 6).
These numbers, together with numbers of the form 6*j*k-j-k (A070799) are the numbers s for which 6*s+1 is composite (A046954). If we also add in the numbers of the form 6*j*k+j-k (A046953), we get the numbers t such that 6*t-1 and 6*t+1 do not form a pair of twin primes (A067611).
If N is the set of natural numbers, then the set N-{A070043 U A070799} are the numbers k that make 6*k+1 prime. - Pedro Caceres, Jan 22 2018

Examples

			41 = 6*2*3 + 2 + 3. Equivalently, 6*41+1 = (6*2+1)*(6*3+1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], MemberQ[Mod[Take[Divisors[6#+1], {2, -2}], 6], 1]&]

Extensions

Edited by Dean Hickerson and Vladeta Jovovic, May 07 2002
Showing 1-2 of 2 results.