A307562 Numbers k such that both 6*k + 1 and 6*k + 7 are prime.
1, 2, 5, 6, 10, 11, 12, 16, 17, 25, 26, 32, 37, 45, 46, 51, 55, 61, 62, 72, 76, 90, 95, 100, 101, 102, 121, 122, 125, 137, 142, 146, 165, 172, 177, 181, 186, 187, 205, 215, 216, 220, 237, 241, 242, 247, 257, 270, 276, 277, 282, 290, 291, 292, 296, 297, 310, 311, 312, 331, 332, 335, 347, 355, 356, 380, 381, 390
Offset: 1
Keywords
Examples
a(3) = 5, so 6(5) + 1 = 31 and 6(5) + 7 = 37 are both prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Sally M. Moite, “Primeless” Sieves for Primes and for Prime Pairs Which Differ by 2m, vixra:1903.0353 (2019).
Crossrefs
Programs
-
Mathematica
Select[Range[400], AllTrue[6 # + {1, 7}, PrimeQ] &] (* Michael De Vlieger, Apr 15 2019 *)
-
PARI
isok(n) = isprime(6*n+1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019
Comments