A307561 Numbers k such that both 6*k - 1 and 6*k + 5 are prime.
1, 2, 3, 4, 7, 8, 9, 14, 17, 18, 22, 28, 29, 32, 38, 39, 42, 43, 44, 52, 58, 59, 64, 74, 77, 84, 93, 94, 98, 99, 107, 108, 109, 113, 137, 143, 147, 157, 158, 162, 163, 169, 182, 183, 184, 197, 198, 203, 204, 213, 214, 217, 227, 228, 238, 239, 247, 248, 249, 259, 267, 268, 269, 312, 317, 318, 329, 333, 344
Offset: 1
Keywords
Examples
a(2) = 2, so 6(2) - 1 = 11 and 6(2) + 5 = 17 are both prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Sally M. Moite, "Primeless" Sieves for Primes and for Prime Pairs Which Differ by 2m, vixra:1903.0353 (2019).
Crossrefs
Programs
-
Mathematica
Select[Range[500], PrimeQ[6# - 1] && PrimeQ[6# + 5] &] (* Alonso del Arte, Apr 14 2019 *)
-
PARI
is(k) = isprime(6*k-1) && isprime(6*k+5); \\ Jinyuan Wang, Apr 20 2019
Comments