A173202 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 + 1 for a = 0,1,2, ... (solutions x are given by the sequence A000466).
0, 5, 58, 207, 500, 985, 1710, 2723, 4072, 5805, 7970, 10615, 13788, 17537, 21910, 26955, 32720, 39253, 46602, 54815, 63940, 74025, 85118, 97267, 110520, 124925, 140530, 157383, 175532, 195025, 215910, 238235, 262048, 287397, 314330, 342895
Offset: 1
Examples
With a=3, x = 35 and y = 207, and then 207^2 = 35^2 - 26.
References
- T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
- D. Duverney, Theorie des nombres (2e edition), Dunod, 2007, p.151
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- W. J. Ellison, F. Ellison, J. Pesek, C. E. Stall & D. S. Stall, The diophantine equation y^2 + k = x^3, J. Number Theory 4 (1972), 107-117.
- Helmut Richter, Solutions of Mordell's equation y^2 = x^3 + k (solutions for 0
- School of Mathematics and Statistics, University of St Andrews, Louis Joel Mordell.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- D. J. Wright, Mordell's Equation.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
I:=[0, 5, 58, 207]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
-
Maple
for a from 0 to 100 do : z := evalf(a*(8*a^2 - 3)) : print (z) :od :
-
Mathematica
CoefficientList[Series[x*(5+38*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *) CoefficientList[Series[E^x (5 x + 24 x^2 + 8 x^3), {x, 0, 40}], x]*Table[n!, {n, 0, 40}] (* Stefano Spezia, Dec 04 2018 *)
Formula
y = a*(8*a^2 - 3).
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 21*n - 5.
G.f.: x^2*(5 + 38*x + 5*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: exp(x)*(5*x + 24*x^2 + 8*x^3). - Stefano Spezia, Dec 04 2018
Comments