cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182187 a(n) is the least m >= n such that the Hamming distance D(n,m) = 2.

Original entry on oeis.org

3, 2, 4, 5, 7, 6, 10, 11, 11, 10, 12, 13, 15, 14, 22, 23, 19, 18, 20, 21, 23, 22, 26, 27, 27, 26, 28, 29, 31, 30, 46, 47, 35, 34, 36, 37, 39, 38, 42, 43, 43, 42, 44, 45, 47, 46, 54, 55, 51, 50, 52, 53, 55, 54, 58, 59, 59, 58, 60, 61, 63, 62, 94, 95, 67, 66, 68
Offset: 0

Views

Author

Vladimir Shevelev, Apr 17 2012

Keywords

Comments

a(n) = n<+>2 (see comment in A206853).

Crossrefs

Cf. A206853 (trajectory of 1), A207063 (trajectory of 0).
Cf. A209544 (primes which are not terms), A209554 (and also not n<+>3).
Cf. A086799 ((n-1)<+>1), A182209 (n<+>3), A182336 (n<+>4).

Programs

  • Maple
    HD:= (i, j)-> add(h, h=Bits[Split](Bits[Xor](i, j))):
    a:= proc(n) local c;
          for c from n do if HD(n, c)=2 then return c fi od
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 17 2012
  • Mathematica
    t={}; Do[i=n+1; While[Count[IntegerDigits[BitXor[n,i],2],1]!=2,i++]; AppendTo[t,i],{n,0,66}]; t (* Jayanta Basu, May 26 2013 *)
  • PARI
    a(n) = bitxor(n, 3<>1+1,2)); \\ Kevin Ryde, Jul 09 2021
  • Python
    def a(n):
      m = n + 1
      while bin(n^m).count('1') != 2: m += 1
      return m
    print([a(n) for n in range(67)]) # Michael S. Branicky, Mar 02 2021
    
  • Sage
    def A182187(n):
        S = n.bits(); T = S; c = n; L = len(S)
        while true:
             H = sum(a != b for a, b in zip(S, T))
             if H == 2: return c
             c += 1; T = c.bits()
             if len(T) > L: L += 1; S.append(0)
    [A182187(n) for n in (0..66)]   # Peter Luschny, May 26 2013
    

Formula

If n is odd, then a(n) = n+2^(A007814(n+1)-1); if n == 2 (mod 4), then a(n) = n+2^(A007814(n+2)-1); if n == 0 (mod 4), then a(n) = n+3.
Using this formula, we can prove the conjecture formulated in comment in A209554 in the case k=2. Moreover, let us show that if N does not have the form 8*t or 8*t+1, then it can be represented in the form n<+>2. Indeed, in the cases N = 8*t+2, 8*t+4, 8*t+6, 8*t+3, 8*t+5 and 8*t+7 it is sufficient to choose n=N-4, n=N-2, n=N-1, n=N-3, n=N-2 and n = N-3 respectively; in the cases 8*t, 8*t+1, for every choice of n <= N, we do not obtain the equality n<+>2 = N.
In addition, note that n<+>1 = n + 2^A007814(n+1) = A086799(n+1).

Extensions

More terms from Alois P. Heinz, Apr 17 2012