cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182198 Primes of form a^2 + b^2 such that a^4 + b^4 is prime.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 53, 73, 89, 137, 149, 157, 181, 257, 269, 281, 293, 313, 349, 373, 397, 401, 409, 421, 461, 541, 557, 577, 593, 661, 709, 733, 757, 769, 773, 797, 853, 937, 953, 1021, 1049, 1069, 1181, 1237, 1277, 1301, 1373, 1429, 1433, 1453, 1489
Offset: 1

Views

Author

Thomas Ordowski, Apr 20 2012

Keywords

Examples

			13 = 2^2 + 3^2, 2^4 + 3^4 = 97 is prime.
		

Crossrefs

Subsequence of A002313.
Cf. A003336 (numbers that are the sum of 2 nonzero 4th powers).
Cf. A002645 (quartan primes: primes of the form x^4 + y^4).

Programs

  • Mathematica
    nn = 40; t = {}; Do[c = a^2 + b^2; If[c < nn^2 && PrimeQ[c] && PrimeQ[a^4 + b^4], AppendTo[t, c]], {a, nn}, {b, a}]; Sort[t] (* T. D. Noe, Apr 22 2012 *)
    Take[#[[1]]^2+#[[2]]^2&/@Select[Tuples[Range[40],2],AllTrue[{#[[1]]^2+ #[[2]]^2, #[[1]]^4+#[[2]]^4},PrimeQ]&]//Union,60] (* Harvey P. Dale, Jun 25 2018 *)
  • PARI
    list(lim)=my(v=List(),t);lim\=1;for(x=1,sqrtint(lim),for(y=1, min(sqrtint(lim-x^2),x), if(isprime(t=x^2+y^2)&&isprime(x^4+y^4), listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Apr 22 2012