A182209 a(n) is the least m >= n, such that the Hamming distance D(n,m) = 3.
7, 6, 5, 4, 9, 8, 8, 9, 15, 14, 13, 12, 16, 17, 18, 19, 23, 22, 21, 20, 25, 24, 24, 25, 31, 30, 29, 28, 36, 37, 38, 39, 39, 38, 37, 36, 41, 40, 40, 41, 47, 46, 45, 44, 48, 49, 50, 51, 55, 54, 53, 52, 57, 56, 56, 57, 63, 62, 61, 60, 76, 77, 78, 79, 71, 70, 69
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
HD:= (i, j)-> add(h, h=Bits[Split](Bits[Xor](i, j))): a:= proc(n) local c; for c from n do if HD(n, c)=3 then return c fi od end: seq(a(n), n=0..100); # Alois P. Heinz, Apr 18 2012
-
PARI
a(n) = bitxor(n, if(bitand(n,14)==4, 13, 7<
>2+1,2))); \\ Kevin Ryde, Jul 10 2021 -
Python
def d(n, m): return bin(n^m).count('1') def a(n): m = n+1 while d(n, m) != 3: m += 1 return m print([a(n) for n in range(67)]) # Michael S. Branicky, Jul 06 2021
Formula
If n==i mod 8, then a(n) = n-2*i+7, i=0,1,2,3; if n==4 mod 16, then a(n) = n+5; if n==12 mod 16, then a(n) = n+2^(A007814(n+4)-2); if n==5 mod 16, then a(n) = n+3; if n==13 mod 16, then a(n) = n+2^(A007814(n+3)-2); if n==6 mod 8, then a(n) = n+2^(A007814(n+2)-2); if n==7 mod 8, then a(n) = n+2^(A007814(n+1)-2).
Using this formula, we can prove conjecture formulated in comment in A209554 in case k=3. Moreover, one can prove that N could be represented in form n<+>2 or n<+>3 iff N is not a number of the forms 32*t, 32*t+1. - Vladimir Shevelev, Apr 25 2012
Comments