A182237 Numbers occurring exactly in 2 rows of Pascal's triangle.
6, 10, 15, 20, 21, 28, 35, 36, 45, 55, 56, 66, 70, 78, 84, 91, 105, 126, 136, 153, 165, 171, 190, 220, 231, 252, 253, 276, 286, 300, 325, 330, 351, 364, 378, 406, 435, 455, 462, 465, 495, 496, 528, 560, 561, 595, 630, 666, 680, 703, 715, 741, 780, 792, 816
Offset: 1
Keywords
Links
- Reinhard Zumkeller and T. D. Noe, Table of n, a(n) for n = 1..1000 (first 100 terms from Reinhard Zumkeller)
- Wikipedia, Singmaster's conjecture
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Cf. A098565.
Programs
-
Haskell
import Data.List (elemIndices) a182237 n = a182237_list !! (n-1) a182237_list = map (+ 2 ) $ elemIndices 2 a059233_list
-
Mathematica
nn = 1000; t = Table[s = {}; k = 1; While[k++; b = Binomial[n, k]; k <= n/2 && b <= nn, AppendTo[s, b]]; s, {n, nn}]; t2 = Select[t, Length[#] > 0 &]; Transpose[Select[Tally[Sort[Flatten[t2]]], #[[2]] == 1 &]][[1]] (* T. D. Noe, Mar 13 2013 *)
Comments