A182259
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
0, 3, 0, 11, 3, 0, 28, 11, 3, 0, 56, 28, 11, 3, 0, 99, 56, 26, 11, 3, 0, 159, 97, 52, 26, 11, 3, 0, 240, 153, 93, 50, 26, 11, 3, 0, 344, 230, 149, 85, 50, 26, 11, 3, 0, 475, 330, 222, 139, 85, 50, 26, 11, 3, 0, 635, 453, 314, 212, 133, 85, 50, 26, 11, 3, 0, 828
Offset: 1
Examples
Northwest corner (with antidiagonals read from northeast to southwest): 0...3...11...28...56...99...159 0...3...11...28...56...97...153 0...3...11...26...52...93...149 0...3...11...26...50...85...139 0...3...11...26...50...85...133
Crossrefs
Cf. A211790.
Programs
-
Mathematica
z = 48; t[k_, n_] := Module[{s = 0}, (Do[If[2 w^k > x^k + y^k, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; Table[t[1, n], {n, 1, z}] (* A182260 *) Table[t[2, n], {n, 1, z}] (* A211810 *) Table[t[3, n], {n, 1, z}] (* A211811 *) TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A182259 *) Table[k (k - 1) (2 k + 5)/6, {k, 1, z}] (* row-limit sequence, A051925 *) (* Peter J. C. Moses, Apr 13 2012 *)
Comments