A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A182260
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w
Original entry on oeis.org
0, 3, 11, 28, 56, 99, 159, 240, 344, 475, 635, 828, 1056, 1323, 1631, 1984, 2384, 2835, 3339, 3900, 4520, 5203, 5951, 6768, 7656, 8619, 9659, 10780, 11984, 13275, 14655, 16128, 17696, 19363, 21131, 23004, 24984, 27075, 29279, 31600, 34040
Offset: 1
For n=2, the 3 triples (w,x,y) for which 2w<x+y are (1,1,2), (1,2,1), (1,2,2). The 3 triples for which 2w>x+y are (2,1,1), (2,1,2), (2,2,1).
-
(See the program at A211802.)
LinearRecurrence[{3,-2,-2,3,-1},{0,3,11,28,56},50] (* Harvey P. Dale, Aug 10 2019 *)
A211808
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
Original entry on oeis.org
1, 5, 1, 16, 5, 1, 36, 16, 5, 1, 69, 36, 16, 5, 1, 117, 69, 38, 16, 5, 1, 184, 119, 73, 38, 16, 5, 1, 272, 190, 123, 75, 38, 16, 5, 1, 385, 282, 194, 131, 75, 38, 16, 5, 1, 525, 399, 290, 204, 131, 75, 38, 16, 5, 1, 696, 547, 415, 300, 210, 131, 75, 38, 16, 5, 1
Offset: 1
Northwest corner:
1...5...16...36...69...117...184
1...5...16...36...69...119...190
1...5...16...38...73...123...194
1...5...16...38...75...131...204
1...5...16...38...75...131...210
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k <= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A055232 *)
Table[t[2, n], {n, 1, z}] (* A211806 *)
Table[t[3, n], {n, 1, z}] (* A211807 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1],
{n, 1, 12}, {k, 1, n}]] (* A211808 *)
Table[k (4 k^2 - 3 k + 5)/6,
{k, 1, z}] (* row-limit sequence, A174723 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A211810
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^2>x^2+y^2.
Original entry on oeis.org
0, 3, 11, 28, 56, 97, 153, 230, 330, 453, 605, 788, 1002, 1251, 1541, 1872, 2244, 2667, 3139, 3662, 4240, 4877, 5571, 6330, 7158, 8055, 9021, 10062, 11182, 12379, 13657, 15026, 16480, 18021, 19661, 21398, 23232, 25169, 27211, 29362, 31618
Offset: 1
A211811
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^3>x^3+y^3.
Original entry on oeis.org
0, 3, 11, 26, 52, 93, 149, 222, 314, 431, 577, 750, 952, 1185, 1461, 1776, 2132, 2529, 2971, 3468, 4018, 4621, 5277, 5988, 6772, 7619, 8531, 9512, 10562, 11699, 12913, 14204, 15574, 17031, 18585, 20226, 21956, 23779, 25707, 27738, 29874
Offset: 1
Showing 1-5 of 5 results.
Comments