A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A213697
T(n,k)=Half the number of (n+1)X(n+1) symmetric 0..k arrays with no 2X2 subblock summing to 2k.
Original entry on oeis.org
3, 11, 13, 28, 192, 70, 56, 1320, 7827, 529, 99, 5470, 208072, 750261, 5148, 159, 17499, 2322599, 109820000, 168382284, 68798, 240, 45892, 16537086, 4286833981, 193946752094, 88681187619, 1220409, 344, 105856, 84059234, 83545858925
Offset: 1
Some solutions for n=4 k=4
..0..4..0..2..3....1..2..4..4..0....2..4..3..3..2....3..4..3..1..2
..4..2..0..3..3....2..1..3..4..1....4..2..3..3..1....4..2..2..1..0
..0..0..4..3..1....4..3..2..1..0....3..3..2..2..3....3..2..3..4..2
..2..3..3..2..0....4..4..1..0..0....3..3..2..3..2....1..1..4..2..4
..3..3..1..0..4....0..1..0..0..4....2..1..3..2..2....2..0..2..4..1
A212782
T(n,k)=Half the number of 0..k arrays of length n+2 with second differences nonzero.
Original entry on oeis.org
3, 11, 5, 28, 27, 8, 56, 99, 66, 13, 99, 252, 350, 162, 21, 159, 546, 1134, 1238, 397, 34, 240, 1034, 3010, 5104, 4379, 973, 55, 344, 1803, 6724, 16594, 22972, 15490, 2385, 89, 475, 2925, 13544, 43727, 91482, 103391, 54793, 5846, 144, 635, 4517, 24870, 101743
Offset: 1
Some solutions for n=5 k=4
..2....2....2....1....2....4....1....3....3....4....3....2....1....1....0....4
..0....2....2....1....2....2....4....4....1....1....4....4....3....3....3....3
..3....3....0....2....1....2....2....0....0....3....2....1....0....3....2....3
..2....3....2....4....3....4....3....2....4....3....3....3....2....2....3....4
..3....1....2....4....4....1....0....0....3....1....2....4....1....0....0....1
..2....3....0....2....3....1....4....3....3....1....0....3....3....1....1....1
..4....3....4....2....1....2....0....0....1....0....2....1....3....1....1....4
A182259
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
Original entry on oeis.org
0, 3, 0, 11, 3, 0, 28, 11, 3, 0, 56, 28, 11, 3, 0, 99, 56, 26, 11, 3, 0, 159, 97, 52, 26, 11, 3, 0, 240, 153, 93, 50, 26, 11, 3, 0, 344, 230, 149, 85, 50, 26, 11, 3, 0, 475, 330, 222, 139, 85, 50, 26, 11, 3, 0, 635, 453, 314, 212, 133, 85, 50, 26, 11, 3, 0, 828
Offset: 1
Northwest corner (with antidiagonals read from northeast to southwest):
0...3...11...28...56...99...159
0...3...11...28...56...97...153
0...3...11...26...52...93...149
0...3...11...26...50...85...139
0...3...11...26...50...85...133
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k > x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A182260 *)
Table[t[2, n], {n, 1, z}] (* A211810 *)
Table[t[3, n], {n, 1, z}] (* A211811 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1],
{n, 1, 12}, {k, 1, n}]] (* A182259 *)
Table[k (k - 1) (2 k + 5)/6,
{k, 1, z}] (* row-limit sequence, A051925 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A211802
R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals.
Original entry on oeis.org
0, 3, 0, 11, 3, 0, 28, 13, 3, 0, 56, 32, 13, 3, 0, 99, 64, 34, 13, 3, 0, 159, 113, 68, 34, 13, 3, 0, 240, 181, 117, 70, 34, 13, 3, 0, 344, 272, 187, 125, 70, 34, 13, 3, 0, 475, 388, 282, 197, 125, 70, 34, 13, 3, 0, 635, 535, 406, 292, 203, 125, 70, 34, 13, 3, 0
Offset: 1
Northwest corner:
0 3 11 28 56 99 159 240
0 3 13 32 64 113 181 272
0 3 13 34 68 117 187 282
0 3 13 34 70 125 197 292
0 3 13 34 70 125 203 302
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A182260 *)
Table[t[2, n], {n, 1, z}] (* A211800 *)
Table[t[3, n], {n, 1, z}] (* A211801 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12},
{k, 1, n}]] (* this sequence *)
Table[k (k - 1) (4 k + 1)/6, {k, 1,
z}] (* row-limit sequence, A016061 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A008670
Molien series for Weyl group F_4.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 16, 18, 20, 24, 28, 30, 36, 40, 44, 50, 56, 60, 69, 75, 81, 90, 99, 105, 117, 126, 135, 147, 159, 168, 184, 196, 208, 224, 240, 252, 272, 288, 304, 324, 344, 360, 385, 405, 425, 450, 475, 495, 525, 550, 575, 605, 635, 660, 696, 726, 756
Offset: 0
- Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
- L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 28).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 236
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1).
-
MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
-
a:= proc(n) local m, r; m := iquo (n, 12, 'r'); r:= r+1; ([4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26][r]+ (6+r+4*m)*m)*m+ [1$3, 2, 3$2, 5, 6, 7, 9, 11, 12][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
-
Take[CoefficientList[Series[1/((1-x^2)(1-x^6)(1-x^8)(1-x^12)),{x,0,130}], x], {1,-1,2}] (* or *) LinearRecurrence[ {1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1},{1,1,1,2,3,3,5,6,7,9,11,12,16,18},70] (* Harvey P. Dale, Feb 07 2012 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))) \\ G. C. Greubel, Sep 08 2019
-
def A008670_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))).list()
A008670_list(70) # G. C. Greubel, Sep 08 2019
Showing 1-7 of 7 results.
Comments