A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A182259
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
Original entry on oeis.org
0, 3, 0, 11, 3, 0, 28, 11, 3, 0, 56, 28, 11, 3, 0, 99, 56, 26, 11, 3, 0, 159, 97, 52, 26, 11, 3, 0, 240, 153, 93, 50, 26, 11, 3, 0, 344, 230, 149, 85, 50, 26, 11, 3, 0, 475, 330, 222, 139, 85, 50, 26, 11, 3, 0, 635, 453, 314, 212, 133, 85, 50, 26, 11, 3, 0, 828
Offset: 1
Northwest corner (with antidiagonals read from northeast to southwest):
0...3...11...28...56...99...159
0...3...11...28...56...97...153
0...3...11...26...52...93...149
0...3...11...26...50...85...139
0...3...11...26...50...85...133
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k > x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A182260 *)
Table[t[2, n], {n, 1, z}] (* A211810 *)
Table[t[3, n], {n, 1, z}] (* A211811 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1],
{n, 1, 12}, {k, 1, n}]] (* A182259 *)
Table[k (k - 1) (2 k + 5)/6,
{k, 1, z}] (* row-limit sequence, A051925 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A211807
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^3<=x^3+y^3.
Original entry on oeis.org
1, 5, 16, 38, 73, 123, 194, 290, 415, 569, 754, 978, 1245, 1559, 1914, 2320, 2781, 3303, 3888, 4532, 5243, 6027, 6890, 7836, 8853, 9957, 11152, 12440, 13827, 15301, 16878, 18564, 20363, 22273, 24290, 26430, 28697, 31093, 33612, 36262
Offset: 1
-
f:= proc(n) local x;
n + add(2*floor(((x^3+n^3)/2)^(1/3)), x=1..n-1)
end proc:
ListTools:-PartialSums(map(f,[$1..50])); # Robert Israel, Jan 26 2025
-
(See the program at A211808.)
A211806
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^2<=x^2+y^2.
Original entry on oeis.org
1, 5, 16, 36, 69, 119, 190, 282, 399, 547, 726, 940, 1195, 1493, 1834, 2224, 2669, 3165, 3720, 4338, 5021, 5771, 6596, 7494, 8467, 9521, 10662, 11890, 13207, 14621, 16134, 17742, 19457, 21283, 23214, 25258, 27421, 29703, 32108, 34638
Offset: 1
Showing 1-4 of 4 results.
Comments