A182316 a(n) = binomial(n^2 + 3*n, n) / (n+1)^2.
1, 1, 5, 51, 819, 18278, 527085, 18730855, 793542167, 39113958819, 2201663313200, 139461523272085, 9824294829146550, 762188806010669820, 64595315110014533629, 5939055918736259991759, 588894813538193130767295, 62651281502108852275337225
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..339
Crossrefs
Cf. A143669.
Programs
-
Maple
A182316:=n->binomial(n^2 + 3*n, n) / (n+1)^2: seq(A182316(n), n=0..20); # Wesley Ivan Hurt, Feb 11 2017
-
PARI
{a(n)=binomial((n+1)^2+n-1, n)/(n+1)^2} for(n=0,20,print1(a(n),","))
Formula
a(n) = [x^n] 1/(1-x)^((n+1)^2) / (n+1)^2 ; that is, a(n) equals the coefficient of x^n in 1/(1-x)^((n+1)^2) divided by (n+1)^2.
Comments