cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182319 Triangular array: T(n,k) counts upper triangular matrices with entries from {0,1} having n 1's in total, with k 1's on the main diagonal and at least one nonzero entry in each row.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 7, 16, 9, 1, 33, 83, 64, 16, 1, 197, 530, 486, 180, 25, 1, 1419, 4026, 4144, 1930, 410, 36, 1, 11966, 35462, 39746, 21574, 5965, 812, 49, 1, 115575, 355368, 425762, 258426, 85589, 15477, 1456, 64, 1
Offset: 1

Views

Author

Peter Bala, Apr 24 2012

Keywords

Comments

This triangle is a refinement of A179525.

Examples

			Triangle begins
.n\k.|...1.....2.....3.....4.....5
= = = = = = = = = = = = = = = = = =
..1..|...1
..2..|...1.....1
..3..|...2.....4.....1
..4..|...7....16.....9.....1
..5..|..33....83....64....16.....1
..6..|.197...530...486...180....25.....1
...
T(3,2) = 4: there is one 2x2 matrix and three 3x3 matrices with the specified properties:
........1..0..0.....0..1..0.....0..0..1..
1.1.....0..0..1.....0..1..0.....0..1..0..
0.1.....0..0..1.....0..0..1.....0..0..1..
		

Crossrefs

Programs

  • PARI
    \\ A(n) returns vector of n'th row.
    A(n)={ my(rv=if(n==1, [1], vector(n)));
    my(M=matrix(2,n,k,s,k==2&&s==1));
    \\ M[k,s] is number of configs with s 1's with k+1 on diagonal.
    for(r=2, n, M=matrix(r+1,n,k,s, sum(j=0, min(s-1,r-1), binomial(r-1,j) * (if(j>0&&k<=r, M[k,s-j]) + if(j1, M[k-1,s-j-1]))));
      for(i=1, r, rv[i]+=M[i+1,n])); rv }
    for(n=1,10,print(A(n))); \\ Andrew Howroyd, Oct 10 2017

Formula

Let F(x,t) = 1 - (1-t)*(1 - (1-x*t) + (1-x*t)*(1-x^2*t) - (1-x*t)*(1-x^2*t)*(1-x^3*t) + ...). Then F(1+x,1+x*t) = 1 + x*t + (t+t^2)*x^2 + (2*t+4*t^2+t^3)*x^3 + (7*t+16*t^2+9*t^3+t^4)*x^4 + ... is conjecturally a generating function for the triangle.
T(n+1,1) = sum {k = 1..n} T(n,k); T(n+1,n) = n^2.
First column A179525. Row sums A179525.

Extensions

Terms a(23) and beyond from Andrew Howroyd, Oct 10 2017