A182319 Triangular array: T(n,k) counts upper triangular matrices with entries from {0,1} having n 1's in total, with k 1's on the main diagonal and at least one nonzero entry in each row.
1, 1, 1, 2, 4, 1, 7, 16, 9, 1, 33, 83, 64, 16, 1, 197, 530, 486, 180, 25, 1, 1419, 4026, 4144, 1930, 410, 36, 1, 11966, 35462, 39746, 21574, 5965, 812, 49, 1, 115575, 355368, 425762, 258426, 85589, 15477, 1456, 64, 1
Offset: 1
Examples
Triangle begins .n\k.|...1.....2.....3.....4.....5 = = = = = = = = = = = = = = = = = = ..1..|...1 ..2..|...1.....1 ..3..|...2.....4.....1 ..4..|...7....16.....9.....1 ..5..|..33....83....64....16.....1 ..6..|.197...530...486...180....25.....1 ... T(3,2) = 4: there is one 2x2 matrix and three 3x3 matrices with the specified properties: ........1..0..0.....0..1..0.....0..0..1.. 1.1.....0..0..1.....0..1..0.....0..1..0.. 0.1.....0..0..1.....0..0..1.....0..0..1..
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
PARI
\\ A(n) returns vector of n'th row. A(n)={ my(rv=if(n==1, [1], vector(n))); my(M=matrix(2,n,k,s,k==2&&s==1)); \\ M[k,s] is number of configs with s 1's with k+1 on diagonal. for(r=2, n, M=matrix(r+1,n,k,s, sum(j=0, min(s-1,r-1), binomial(r-1,j) * (if(j>0&&k<=r, M[k,s-j]) + if(j
1, M[k-1,s-j-1])))); for(i=1, r, rv[i]+=M[i+1,n])); rv } for(n=1,10,print(A(n))); \\ Andrew Howroyd, Oct 10 2017
Formula
Let F(x,t) = 1 - (1-t)*(1 - (1-x*t) + (1-x*t)*(1-x^2*t) - (1-x*t)*(1-x^2*t)*(1-x^3*t) + ...). Then F(1+x,1+x*t) = 1 + x*t + (t+t^2)*x^2 + (2*t+4*t^2+t^3)*x^3 + (7*t+16*t^2+9*t^3+t^4)*x^4 + ... is conjecturally a generating function for the triangle.
T(n+1,1) = sum {k = 1..n} T(n,k); T(n+1,n) = n^2.
Extensions
Terms a(23) and beyond from Andrew Howroyd, Oct 10 2017
Comments