cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182378 G.f. satisfies A(x) = 1 + x*cycle_index(Sym(7), A(x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 285, 716, 1833, 4740, 12410, 32754, 87176, 233547, 629540, 1705809, 4644231, 12697500, 34848694, 95973026, 265142431, 734606478, 2040683413, 5682634446, 15859800889, 44355531103, 124290064228, 348904212741, 981082979409
Offset: 0

Views

Author

Michael Burkhart, Apr 26 2012

Keywords

Comments

Number of rooted trees where each node has at most 7 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 7$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[ b[i-1, i-1, k, k] + j - 1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n-1, n-1, 7, 7]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 15 2018, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=1..7} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.338512011286603947719604869750539045616436718225097926729820... - Robert A. Russell, Feb 11 2023

Extensions

More terms from Patrick Devlin, Apr 29 2012