A182409 Prime-generating polynomial: a(n) = 4*n^2 + 12*n - 1583.
-1583, -1567, -1543, -1511, -1471, -1423, -1367, -1303, -1231, -1151, -1063, -967, -863, -751, -631, -503, -367, -223, -71, 89, 257, 433, 617, 809, 1009, 1217, 1433, 1657, 1889, 2129, 2377, 2633, 2897, 3169, 3449, 3737, 4033, 4337, 4649, 4969, 5297, 5633, 5977
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[4*n^2+12*n-1583: n in [0..50]]; // Vincenzo Librandi, May 29 2016
-
Mathematica
Table[4 n^2 + 12 n - 1583, {n, 0, 50}] (* Vincenzo Librandi, May 29 2016 *)
-
PARI
a(n)=4*n^2+12*n-1583 \\ Charles R Greathouse IV, Oct 01 2012
Formula
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1591*x^2 - 3182*x + 1583)/(x - 1)^3. (End)
E.g.f.: exp(x)*(-1583 + 16*x + 4*x^2). - Elmo R. Oliveira, Feb 09 2025
Comments