A182438 Numbers n such that neither n^2+n-1 nor n^2-n-1 is prime.
1, 18, 23, 33, 34, 37, 43, 52, 58, 62, 63, 72, 73, 74, 75, 78, 79, 80, 81, 82, 88, 91, 92, 98, 99, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 118, 119, 122, 123, 124, 128, 129, 133, 136, 137, 143, 147, 151, 152, 157, 162, 166, 167, 168, 173
Offset: 1
Examples
18^2+18-1=341 is not prime, and 18^2-18-1=305 is not prime, so 18 is in the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n: n in [1..180] | not IsPrime(n^2+n-1) and not IsPrime(n^2-n-1)]; // Vincenzo Librandi, Jan 19 2013
-
Mathematica
Select[Range[500], !PrimeQ[#^2 + # - 1] && !PrimeQ[#^2 - # - 1] &] (* Vincenzo Librandi, Jan 19 2013 *) Select[Range[200],NoneTrue[#^2+{#-1,-#-1},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 04 2018 *)
-
PARI
is(n)=!isprime(n^2+n-1) && !isprime(n^2-n-1) \\ Charles R Greathouse IV, Jun 13 2017
Formula
a(n) ~ n. - Charles R Greathouse IV, Jun 13 2017