A182474 Primes of the form p^q - q, where p and q are primes.
2, 5, 7, 23, 47, 167, 359, 839, 1367, 1847, 2207, 3719, 5039, 7919, 8179, 10607, 11447, 16127, 17159, 19319, 29927, 36479, 44519, 49727, 54287, 57119, 66047, 85847, 97967, 113567, 128879, 177239, 196247, 201599, 218087, 241079, 273527, 292679, 323759, 344567
Offset: 1
Examples
8179 = 2^13 - 13
Programs
-
Mathematica
nn = 600000; mx = Floor[Log[2, nn]]; t2 = Select[Table[2^n - n, {n, Prime[Range[PrimePi[mx]]]}], PrimeQ]; mx = Floor[Sqrt[nn]]; tp = Select[Table[n^2 - 2, {n, Prime[Range[PrimePi[mx]]]}], PrimeQ]; Union[t2, tp] (* T. D. Noe, May 01 2012 *) Module[{upto=350000,r},r=Floor[Sqrt[upto+2]];Select[Union[Select[ (#1[[1]]^#1[[2]]-#1[[2]]&)/@Tuples[Prime[Range[r]],2], PrimeQ]], #1<=upto&]] (* Harvey P. Dale, Dec 07 2012 *)