cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182474 Primes of the form p^q - q, where p and q are primes.

Original entry on oeis.org

2, 5, 7, 23, 47, 167, 359, 839, 1367, 1847, 2207, 3719, 5039, 7919, 8179, 10607, 11447, 16127, 17159, 19319, 29927, 36479, 44519, 49727, 54287, 57119, 66047, 85847, 97967, 113567, 128879, 177239, 196247, 201599, 218087, 241079, 273527, 292679, 323759, 344567
Offset: 1

Views

Author

Alex Ratushnyak, May 01 2012

Keywords

Examples

			8179 = 2^13 - 13
		

Crossrefs

Cf. A049002 (primes of the form p^2 - 2).
Cf. A057678 (primes of the form 2^p - p).

Programs

  • Mathematica
    nn = 600000; mx = Floor[Log[2, nn]]; t2 = Select[Table[2^n - n, {n, Prime[Range[PrimePi[mx]]]}], PrimeQ]; mx = Floor[Sqrt[nn]]; tp = Select[Table[n^2 - 2, {n, Prime[Range[PrimePi[mx]]]}], PrimeQ]; Union[t2, tp] (* T. D. Noe, May 01 2012 *)
    Module[{upto=350000,r},r=Floor[Sqrt[upto+2]];Select[Union[Select[ (#1[[1]]^#1[[2]]-#1[[2]]&)/@Tuples[Prime[Range[r]],2], PrimeQ]], #1<=upto&]] (* Harvey P. Dale, Dec 07 2012 *)

Formula

Union of A049002 and A057678.