cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182512 a(n) = (16^n - 1)/5.

Original entry on oeis.org

0, 3, 51, 819, 13107, 209715, 3355443, 53687091, 858993459, 13743895347, 219902325555, 3518437208883, 56294995342131, 900719925474099, 14411518807585587, 230584300921369395, 3689348814741910323, 59029581035870565171, 944473296573929042739
Offset: 0

Views

Author

Brad Clardy, May 03 2012

Keywords

Comments

Even bisection of A015521 and also A112627. All of the terms are divisible by 3, even terms by 17.
These are binary numbers 11, 110011, 1100110011, ... - Jamie Simpson, Oct 28 2022

Crossrefs

Programs

  • Magma
    [(1/5)*2^(4*i) -(1/5): i in [0..30]];
    
  • Maple
    seq((16^n-1)/5, n=0..50); # Robert Israel, Jan 22 2016
  • Mathematica
    (16^Range[0,20]-1)/5 (* Harvey P. Dale, Aug 07 2019 *)
    LinearRecurrence[{17,-16},{0,3},20] (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    a(n) = (16^n - 1)/5; \\ Michel Marcus, Jan 22 2016

Formula

a(n) = 16*a(n-1) + 3 where a(0)=0.
a(n) = A015521(2n).
a(n) = A112627(2n) for n >= 1; a(0)=0.
G.f.: 3*x / ( (16*x-1)*(x-1) ). - R. J. Mathar, Apr 20 2015
a(n) = 3*A131865(n-1). - R. J. Mathar, Apr 20 2015
a(n) = A108020(n)/4. - Jamie Simpson, Oct 28 2022