cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182542 Second diagonal of triangle in A145879.

Original entry on oeis.org

1, 8, 46, 232, 1093, 4944, 21778, 94184, 401930, 1698160, 7119516, 29666704, 123012781, 508019104, 2091005866, 8582372584, 35141476126, 143595498544, 585720020356, 2385430111024, 9701814930466, 39411044641888, 159926316674356, 648348726966672, 2626193752638388
Offset: 3

Views

Author

N. J. A. Sloane, May 04 2012

Keywords

Comments

Sum of valley heights over all Dyck n-paths. - David Scambler, Oct 05 2012

Examples

			Dyck 4-paths with nonzero valley heights are: UUUD(2)UDDD, UUUDD(1)UDD, UUD(1)UUDDD, UUD(1)UD(1)UDD, UUD(1)UDD(0)UD, and UD(0)UUD(1)UDD, with valley heights shown in parentheses, giving a(4) = 8. - _David Scambler_, Oct 05 2012
		

Crossrefs

Cf. A145879.

Programs

  • Mathematica
    a[n_] := 4^(n - 1) - n CatalanNumber[n];
    Array[a, 25, 3] (* Peter Luschny, Jun 08 2020 *)
  • Maxima
    a(n):=2*sum((4^i*binomial(2*(n-i),n-i-2))/(n-i),i,0,n-1); /* Vladimir Kruchinin, Mar 29 2019  */

Formula

G.f. appears to be (1-2*x-sqrt(1-4*x))^2/(4*x*(1-4*x)). - Mark van Hoeij, Apr 19 2013
a(n) ~ 2^(2*n-2) * (1-4/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 13 2013
a(n) = 2*Sum_{i=0..n-1} 4^i*C(2*(n-i),n-i-2)/(n-i). - Vladimir Kruchinin, Mar 29 2019
a(n) = 4^(n-1) - C(2*n,n)*n/(n+1). - Vladimir Kruchinin, Jun 08 2020

Extensions

More terms from Alois P. Heinz, May 30 2012