cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A212220 Triangle T(n,k), n>=0, 0<=k<=3n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete tripartite graph K_(n,n,n), highest powers first.

Original entry on oeis.org

1, 1, -3, 2, 0, 1, -12, 58, -137, 154, -64, 0, 1, -27, 324, -2223, 9414, -24879, 39528, -33966, 11828, 0, 1, -48, 1064, -14244, 126936, -784788, 3409590, -10329081, 21197804, -27779384, 20648794, -6476644, 0, 1, -75, 2650, -58100, 878200, -9632440, 78681510
Offset: 0

Views

Author

Alois P. Heinz, May 06 2012

Keywords

Comments

The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.

Examples

			2 example graphs:             +-------------+
.                             | +-------+   |
.                             +-o---o---o   |
.                                \ / \ / \ /
.                                 X   X   X
.                                / \ / \ / \
.              o---o---o      +-o---o---o   |
.              +-------+      | +-------+   |
.                             +-------------+
Graph:         K_(1,1,1)        K_(2,2,2)
Vertices:          3                6
Edges:             3               12
The complete tripartite graph K_(1,1,1) is the cycle graph C_3 with chromatic polynomial q*(q-1)*(q-2) = q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1;
  1,   -3,    2,       0;
  1,  -12,   58,    -137,     154,       -64,         0;
  1,  -27,  324,   -2223,    9414,    -24879,     39528, ...
  1,  -48, 1064,  -14244,  126936,   -784788,   3409590, ...
  1,  -75, 2650,  -58100,  878200,  -9632440,  78681510, ...
  1, -108, 5562, -180585, 4123350, -70008186, 912054348, ...
  ...
		

Crossrefs

Columns k=0-1 give: A000012, (-1)*A033428.
Row sums and last elements of rows give: A000007.
Row lengths give: A016777.

Programs

  • Maple
    P:= proc(n) option remember;
           expand(add(add(Stirling2(n, k) *Stirling2(n, m)
           *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=0..n), k=0..n))
        end:
    T:= n-> seq(coeff(P(n), q, 3*n-k), k=0..3*n):
    seq(T(n), n=0..6);
  • Mathematica
    P[n_] := P[n] = Expand[Sum[Sum[StirlingS2[n, k] *StirlingS2[n, m]*Product[q - i, {i, 0, k + m - 1}]*(q - k - m)^n, {m, 1, n}], {k, 1, n}]];
    T[n_] := Table[Coefficient[P[n], q, 3*n - k], {k, 0, 3*n}];
    Array[T, 6] // Flatten (* Jean-François Alcover, May 29 2018, from Maple *)

Formula

T(n,k) = [q^(3*n-k)] Sum_{k,m=0..n} S2(n,k) * S2(n,m) * (q-k-m)^n * Product_{i=0..k+m-1} (q-i) with S2 = A008277.
Sum_{k=0..3n} (-1)^k * T(n,k) = A370961(n). - Alois P. Heinz, May 02 2024

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 02 2024

A266858 Number of acyclic orientations of the Turán graph T(n,3).

Original entry on oeis.org

1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0

Views

Author

Alois P. Heinz, Jan 04 2016

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Crossrefs

Column k=3 of A267383.
Trisection gives A370961.

Programs

  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]];
    a[n_] := A[n, 3];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)

Formula

a(n) ~ n! / (2*(1 - log(3/2)) * 3^n * (log(3/2))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
Showing 1-2 of 2 results.