A182560 a(n) = (a(n-1) AND a(n-2)) XOR n.
0, 1, 2, 3, 6, 7, 0, 7, 8, 9, 2, 11, 14, 7, 8, 15, 24, 25, 10, 27, 30, 15, 24, 31, 0, 25, 26, 3, 30, 31, 0, 31, 32, 33, 2, 35, 38, 7, 32, 39, 8, 41, 34, 11, 46, 39, 8, 47, 56, 25, 42, 59, 30, 47, 56, 31, 32, 57, 26, 35, 62, 31, 32, 63, 96, 97, 34, 99, 102, 39, 96, 103
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, AND
- Eric Weisstein's World of Mathematics, XOR
- Wikipedia, Bitwise operation AND
- Wikipedia, Bitwise operation XOR
Programs
-
Haskell
import Data.Bits ((.&.), xor) a182560 n = a182560_list !! n a182560_list = 0 : 1 : 2 : zipWith xor [3..] (tail $ zipWith (.&.) a182560_list $ tail a182560_list) :: [Integer] -- Reinhard Zumkeller, May 05 2012
-
Mathematica
nxt[{n_,a_,b_}]:={n+1,b,BitXor[BitAnd[a,b],n+1]}; NestList[nxt,{1,0,1},80][[All,2]] (* Harvey P. Dale, Jan 01 2019 *)
-
Python
prpr = 0 prev = 1 for n in range(2,55): current = (prev & prpr) ^ n print(prpr, end=' ') prpr = prev prev = current
Formula
a(0)=0, a(1)=1, a(n) = (a(n-1) AND a(n-2)) XOR n, where AND is the bitwise AND operator, XOR is the bitwise exclusive-or operator.
Comments