cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182579 Triangle read by rows: T(0,0) = 1, for n>0: T(n,n) = 2 and for k<=floor(n/2): T(n,2*k) = n/(n-k) * binomial(n-k,k), T(n,2*k+1) = (n-1)/(n-1-k) * binomial(n-1-k,k).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 5, 4, 5, 2, 1, 1, 6, 5, 9, 5, 2, 1, 1, 7, 6, 14, 9, 7, 2, 1, 1, 8, 7, 20, 14, 16, 7, 2, 1, 1, 9, 8, 27, 20, 30, 16, 9, 2, 1, 1, 10, 9, 35, 27, 50, 30, 25, 9, 2, 1, 1, 11, 10, 44, 35, 77, 50, 55, 25, 11, 2
Offset: 0

Views

Author

Reinhard Zumkeller, May 06 2012

Keywords

Comments

A000204(n+1) = sum of n-th row, Lucas numbers;
A000204(n+3) = alternating row sum of n-th row;
A182584(n) = T(2*n,n), central terms;
A000012(n) = T(n,0), left edge;
A040000(n) = T(n,n), right edge;
A054977(n-1) = T(n,1) for n > 0;
A109613(n-1) = T(n,n-1) for n > 0;
A008794(n) = T(n,n-2) for n > 1.

Examples

			Starting with 2nd row = [1 2] the rows of the triangle are defined recursively without computing explicitely binomial coefficients; demonstrated for row 8, (see also Haskell program):
   (0) 1  1  7  6 14  9  7  2      [A]  row 7 prepended by 0
    1  1  7  6 14  9  7  2 (0)     [B]  row 7, 0 appended
    1  0  1  0  1  0  1  0  1      [C]  1 and 0 alternating
    1  0  7  0 14  0  7  0  0      [D]  = [B] multiplied by [C]
    1  1  8  7 20 14 16  7  2      [E]  = [D] added to [A] = row 8.
The triangle begins:                 | A000204
              1                      |       1
             1  2                    |       3
            1  1  2                  |       4
           1  1  3  2                |       7
          1  1  4  3  2              |      11
         1  1  5  4  5  2            |      18
        1  1  6  5  9  5  2          |      29
       1  1  7  6 14  9  7  2        |      47
      1  1  8  7 20 14 16  7  2      |      76
     1  1  9  8 27 20 30 16  9  2    |     123
    1  1 10  9 35 27 50 30 25  9  2  |     199 .
		

Crossrefs

Programs

  • Haskell
    a182579 n k = a182579_tabl !! n !! k
    a182579_row n = a182579_tabl !! n
    a182579_tabl = [1] : iterate (\row ->
      zipWith (+) ([0] ++ row) (zipWith (*) (row ++ [0]) a059841_list)) [1,2]
  • Mathematica
    T[_, 0] = 1;
    T[n_, n_] /; n > 0 = 2;
    T[_, 1] = 1;
    T[n_, k_] := T[n, k] = Which[
         OddQ[k],  T[n - 1, k - 1],
         EvenQ[k], T[n - 1, k - 1] + T[n - 1, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)

Formula

T(n+1,2*k+1) = T(n,2*k), T(n+1,2*k) = T(n,2*k-1) + T(n,2*k).