cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182668 The n-th Fourier coefficient divided by 11 of L_1(tau) defined by A. O. L. Atkin in 1967.

Original entry on oeis.org

1, 27, 338, 2835, 18566, 101955, 490253, 2121679, 8424520, 31120519, 108082568, 355805844, 1117485594, 3366122862, 9767102571, 27398599802, 74534162438, 197147428426, 508187725366, 1279132093597, 3149343999710, 7596355910693, 17974782074306, 41775768918777
Offset: 1

Views

Author

Michael Somos, Dec 24 2012

Keywords

Comments

Atkin (1967) on page 22, equation (30), defines phi(tau) = eta(121*tau) / eta(tau), a modular function which satisfies phi(-1/(121*t)) = 11^(-1)/phi(t), where q = exp(2*Pi*i*t). On page 23, equation (33), he defines L_1(tau) = U phi(tau), where U is a Hecke operator so that the n-th Fourier coefficient of L_1 is the 11*n-th Fourier coefficient of phi. On page 26, he finds that L_1(tau) = 11*g_2(tau) + 2*11^2*g_3(tau) + 11^3*g_4(tau) + 11^4*g_5(tau), where g_2, g_3, g_4, g_5 are functions he previously defined. The n-th Fourier coefficient of L_1 is 11*a(n).
First differs from A076394 at a(12). - Omar E. Pol, Dec 24 2012
The sequence of coefficients of the q-expansion of phi(tau) coincides with the partition function A000041 for the first 120 terms. - N. J. A. Sloane, Dec 24 2012

Examples

			x + 27*x^2 + 338*x^3 + 2835*x^4 + 18566*x^5 + 101955*x^6 + 490253*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[ eta[q^121]/ eta[q]/11, {q, 0, 300}], q][[1 ;; -1 ;; 11]] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n = 11*n - 5; A = x * O(x^n); polcoeff( eta(x^121 + A) / eta(x + A), n) / 11)}